Main Article Content

Abstract

Kesenjangan ketersediaan listrik antara daerah perkotaan dan terpencil merupakan salah satu masalah yang harus diselesaikan. Sebagian daerah terpencil menyediakan listrik swadaya menggunakan generator diesel. Salah satu potensi energi terbarukan yang dapat dieksploitasi adalah pemanfaatan biogas dari limbah peternakan sebagai bahan bakar genset. Penelitian ini bertujuan untuk memaparkan potensi genset tenaga biogas skala rumah tangga sebagai salah satu solusi yang menjanjikan untuk melistriki daerah atau pulau terpencil di Indonesia. Sebagai teknologi yang sudah mapan, teknologi biogas menawarkan berbagai keuntungan sebagai sumber energi terbarukan. Teknologi biogas juga menawarkan produk samping berupa pupuk organik yang berkualitas tinggi. Genset berbahan bakar biogas skala rumah tangga dapat dimodifikasi dari genset berbahan bakar bensin berukuran kecil yaitu dengan menambahkan jalur biogas pada karburator mesin. Hasil kajian menunjukkan bahwa genset skala rumah tangga berbahan bakar biogas merupakan salah satu alternatif pilihan yang baik untuk pengembangan listrik di wilayah terpencil. Manfaat maksimal diperoleh melalui sistem terintegrasi yang memadukan kegiatan kebun/pertanian, peternakan, dan penyediaan listrik biogas. Tingginya investasi pembuatan digester dan harga genset biogas serta tidak adanya insentif bagi listrik biogas merupakan kendala yang perlu diatasi dengan melibatkan para pemangku kepentingan.  

Keywords

biogas electricity isolated villages renewable

Article Details

References

  1. Abatzoglou, N. (2009). A review of biogas purification processes. Biofuels, Bioproduct, Biorefinery, 3: 42–71.
  2. Abbasi, T., Tauseef, S.M., Abbasi, S.A. (2012). Biogas Energy. Springer, New York: 1–10.
  3. Abraham, E.R., Ramachandran, S., Ramalingam, V. (2007). Biogas: Can it be an important source of energy? Environmental Science and Pollution Research, 14(1): 67–71.
  4. Aisyah, I. U., Herdiansyah, S. (2015). Strategi pemberdayaan masyarakat dalam pelaksanaan program Desa Mandiri Energi. Share: Social Work Journal, 9(3): 130–141.
  5. Al-Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., Janssen, R. (2008). Biogas Handbook. University of Southern Denmark, Niels Bohrs Vej 9-10, DK-6700 Esbjerg, Denmark.
  6. An, B.X., Preston, T.R., Dolberg, F. (1997). The introduction of low-cost polyethylene tube biodigesters on small scale farms in vietnam. Livestock Research for Rural Development, 11(1). http://www.lrrd.org/lrrd9/2/an92.htm (Accessed July 10, 2015).
  7. Barnhart, S. (2014). From household decisions to global networks: biogas and the allure of carbon trading in Nepal. The Professional Geographer, 66(3): 345–353.
  8. BIRU (Biogas Rumah). (2015). Annual Report Indonesia Domestic Biogas Programme January – December 2014.
  9. Chandra, R., Takeuchi, H., Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renewable Sustainable Energy Review, 16: 1462–1476.
  10. Chen, Y., Hua, W., Feng, Y., & Sweeney, S. (2014). Status and prospects of rural biogas development in China. Renewable and Sustainable Energy Reviews, 39: 679–685.
  11. Cherosky, P.B. (2012). Anaerobic digestion of yard waste and biogas purification by removal of hydrogen sulfide. Master Thesis. Graduate Program in Food, Agricultural and Biological Engineering, Ohio State University.
  12. Chynoweth, D.P., Owens, J.M., Legrand, R. (2001). Renewable methane from anaerobic digestion of biomass. Renewable Energy, 22(3): 1–8.
  13. Ehsan, M., Naznin, N. (2005). Performance of a biogas run petrol engine for small scale power generation. Journal of Energy & Environment, 4: 1–9.
  14. ESDM (Energi dan Sumber Daya Mineral). (2019). Bahan Media Gathering Direk-torat Pembinaan Program Ketenagalistrikan. www.gatrik.esdm.go.id (Diakses 1 Juni 2020).
  15. FAO (Food and Agriculture Organization). (1996). Biogas Technology: A Training Manual for Extension. Consolidated Management Services Nepal (P) Ltd., Kathmandu, Nepal.
  16. Feng, Y., Guo, Y., Yang, Y., Qin, X., & Song, Z. (2014). Household biogas development in rural China: On policy support and other macro sustainable conditions. Renewable and Sustainable Energy Reviews, 16: 679–685.
  17. Fiorelli, F.A.S. and Diaz, G.O. (2007). Anaerobic digestion as centre of dairy livestock and agriculture integration: basis for medium-scale CDM projects development. Engenharia Térmica (Thermal Engineering), 6(02): 8–13.
  18. Ghimire, P.C. (2013). SNV supported domestic biogas programmes in Asia and Africa. Renewable Energy, 49: 90–94.
  19. Gupta, V., Rai, P.K., Risam, K.S. (2012). Integrated crop-livestock farming systems: A strategy for resource conservation and environmental sustainability. Indian Research Journal of Extension Education, II (Special Issue): 49–54.
  20. Hariyanto. (2012). Model Pengembang-an Energi Alternatif Biogas di KPSP Setia Kawan. Workshop Koordinasi Program Biogas Rumah (BIRU), Lampung, 23 Oktober 2012.
  21. Haryanto, A., Suharyadi, Lanya, B. (2017a). Pemanfaatan air tanah dangkal untuk irigasi padi menggunakan pompa berbahan bakar LPG. Jurnal Keteknikan Pertanian, 5(3): 219–226.
  22. Haryanto, A., Marotin, F., Triyono, S., Hasanudin, U. (2017b). Developing a family-size biogas-fueled electricity generating system. IJRED, 6(2): 111–118.
  23. Haryanto, A., Cahyani, D., Triyono, S., Murdapa, F., Haryono, D. (2017c). Economic benefit and greenhouse gas emission reduction potential of a family-scale cowdung anaerobic biogas digester. IJRED, 6(1): 29–36.
  24. Hermawati, N. (2012). Analisis Dampak Ekonomi, Sosial dan Lingkungan dari Pemanfaatan Limbah Ternak Sapi Perah: Studi Kasus di Desa Haurngombong, Kecamatan Pamuli-han, Kabupaten Sumedang, Jawa Barat. Skripsi. Departemen Ekonomi Sumberdaya dan Lingkungan, Fakultas Ekonomi dan Manajemen, Institut Pertanian Bogor.
  25. Horikawa, M.S., Rossi, F., Gimenes, M.L., Costa, C.M.M., da Silva, M.G.C. (2004). Chemical absorption of H2S for biogas purification. Brazilian Journal of Chemical Engineering, 21(03): 415-422.
  26. Jawurek, H.H., Lane, N.W., Rallis, C.J. (1987). Biogas/petrol dual fuelling of SI engine for rural third world use. Biomass, 13(2): 87–103.
  27. Kabir, H., Yegbemey, R.N., Bauer, S. (2013). Factors determinant of biogas adoption in Bangladesh. Renewable Sustainable Energy Review, 28: 881–889.
  28. Kementerian ESDM (Energi dan Sumber Daya Mineral). (2016). Rencana Usaha Penyediaan Tenaga Listrik PT. Perusahaan Listrik Negara (Persero) Tahun 2016 s.d. 2025. Jakarta.
  29. Kementerian ESDM. (2020). Tarif Tenaga Listrik Periode Juli-September 2020 Tidak Naik. Siaran Pers Nomor: 194.Pers/04/ SJI/2020, (3 Juni 2020).
  30. Khan, U.K., Mainali, B., Martin, A., & Silveira, S. (2014). Techno-economic analysis of small scale biogas based polygeneration systems: Bangladesh case study. Sustainable Energy Technologies and Assessments, 7: 68–78.
  31. Kirari J.K., Adel, M., Andria, V., Lakaseru, B.O. (2018) Supporting Indonesia’s Renewable Energy Development in Remote and Rural Areas through Innovative Funding. Jakarta.
  32. Kobayashi, T., Li, Y-Y., Kubota, K., Harada, H., Maeda, T., Yu, H-Q. (2012). Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Applied Microbiology and Biotechnology, 93: 847–857.
  33. Louie, H. (2018). Off-Grid Electrical Systems in Developing Countries. Springer International Publishing AG, Switzerland: 53–82.
  34. McKinsey-Zicari, S. (2003). Removal of hydrogen sulphyde using cow manure compost. Department of Biological and Environmental Engineering, Cornel University (Master Thesis).
  35. Menteri ESDM (Energi dan Sumber Daya Mineral). (2014), Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia No. 03/2014 tentang Petunjuk Teknis Penggunaan Dana Alokasi Khusus Bidang Energi Perdesaan Tahun Anggaran 2014.
  36. Mitianiec, W. (2012). Factors determining ignition and efficient combustion in modern engines operating on gaseous fuels. Internal Combustion Engines (Lejda, K. and Woś, P., editors). InTech, Janeza Trdine 9, Rijeka, Croatia: 3–34.
  37. MOSPI (Ministry of Statistics and Programme Implementation). (2015). Energy Statistics 2015. Central Statistics Office, Government of India. New Delhi: 12–20.
  38. Muche, H. and Zimmermann, H. (1985). The Purification of Biogas. Gesellschaft für Technische Zusammenarbeit (GTZ).
  39. Nguyen, V. C. N. (2011). Small-scale anaerobic digesters in Vietnam – Development and challenges. Journal of Vietnamese Environment, 1(1) : 12–18.
  40. RISE-AT (Regional Information Service Centre for South East Asia on Appropriate Technology). (1998). Review of current status of anaerobic digestion technology for treatment of municipal solid waste. (Accessed from http://www.ist.cmu.ac.th/riseat/documents/adreview.pdf).
  41. Scheftelowitz, M., Thrän, D., (2016). Unlocking the energy potential of manure – An assessment of the biogas production potential at the farm level in Germany. Agriculture, 6: 1–20.
  42. Schmidt, T. S., Dabur, S. (2014). Explaining the diffusion of biogas in India: a new functional approach considering national borders and technology transfer. Environmental Economics and Policy Studies, 16: 171–199.
  43. Scott, S., Tura, F. (2020). Six reasons to dry biogas to a low dewpoint before combustion in a CHP engine. Diakses dari: https://www.parker.com/literature/United%20Kingdom/PAR6841_Whitepaper_v3.pdf (29 Juli 2020).
  44. Soelaeman, Y., Maswar. (2014). Integration of crop-livestock-biogas and the effect of dried sludge manure on the growth and yield of maize on ultisol soil. Agrivita, 36(2): 160–168.
  45. Su, J-J., Chang, Y-C., Chen, Y-J., Chang, K-C., Lee, S-Y. (2013) Hydrogen sulfide removal from livestock biogas by a farm-scale bio-filter desulfurization system. Water Science and Technology, 67(6): 1288–1293.