Quick Count of Different Orange Cultivar on Trees based on Smartphone Image and Artificial Intelligent
Authors
Dimas Firmanda Al Riza , Inggit Kresna Maharsih , Surya HudaDOI:
10.29303/jrpb.v12i2.628Published:
2024-09-29Issue:
Vol. 12 No. 2 (2024): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
harvesting, orchard, quick counting, yield prediction, YOLOArticles
Downloads
How to Cite
Downloads
Abstract
Currently, predictions of orange fruit yield in an orchard are still done manually, namely by sampling manually to count the number of oranges on the tree. This method is not effective and the accuracy of predictions cannot be guaranteed. Automation in the process of counting citrus fruit on trees to predict yield can be done with computer vision using artificial intelligence models for object detection. One of the proposed model solutions that can be used for object detection is by using You Only Look Once (YOLO) architecture. However, the performance of the YOLO model for different varieties of orange trees in Indonesia is not yet known. Therefore, in this research, the development of the YOLOv5 model was carried out to quickly count orange fruit on trees of different varieties including the stages of image capture, image resizing, segmentation, model training with hyperparameters such as batch size and epoch, as well as model evaluation. In this study, the primary image dataset taken consisted of images of orange trees with two different cultivars, namely Pontianak Siamese oranges and Terigas Tangerines which have different characteristics. Then the YOLOv5 model is trained using labeled image data. The YOLOv5 model is trained with variations of hyperparameters and then the results are compared. The best model results in Siam Pontianak have a single label configuration in batch size 4 with parameters Mean Average Precision (mAP50), accuracy, precision, recall, and F1-score which produces a value of 0.88; 0.712; 0.853; 0.822; and 0.8372. Meanwhile, the best model results in Keprok Terigas have a single label configuration in batch size 10 with parameters Mean Average Precision (mAP50), accuracy, precision, recall, and F1-score which produces a value of 0.933; 0.75; 0.913; 0.878; and 0.8951.
References
Badan Pusat Statistik. (2024). Produksi Tanaman Buah-Buahan. https://www.bps.go.id/id/statistics-table/2/NjIjMg==/produksi-tanaman-buah-buahan.html
Barkah, M. F. (2020). Klasifikasi Rasa Buah Jeruk Pontianak Berdasarkan Warna Kulit Buah Jeruk Menggunakan Metode K-Nearest Neighbor. Coding Jurnal Komputer Dan Aplikasi, 8(1). https://doi.org/10.26418/coding.v8i1.39193 DOI: https://doi.org/10.26418/coding.v8i1.39193
Cubero, S., Lee, W. S., Aleixos, N., Albert, F., & Blasco, J. (2016). Automated Systems Based on Machine Vision for Inspecting Citrus Fruits from the Field to Postharvest—a Review. Food and Bioprocess Technology, 9(10), 1623–1639. https://doi.org/10.1007/s11947-016-1767-1 DOI: https://doi.org/10.1007/s11947-016-1767-1
Ditria, E. M., Lopez-Marcano, S., Sievers, M., Jinks, E. L., Brown, C. J., & Connolly, R. M. (2020). Automating the Analysis of Fish Abundance Using Object Detection: Optimizing Animal Ecology With Deep Learning. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00429 DOI: https://doi.org/10.3389/fmars.2020.00429
Jung, H.-K., & Choi, G.-S. (2022). Improved YOLOv5: Efficient Object Detection Using Drone Images under Various Conditions. Applied Sciences, 12(14), 7255. https://doi.org/10.3390/app12147255 DOI: https://doi.org/10.3390/app12147255
Khairunnas, K., Yuniarno, E. M., & Zaini, A. (2021). Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot. Jurnal Teknik ITS, 10(1). https://doi.org/10.12962/j23373539.v10i1.61622 DOI: https://doi.org/10.12962/j23373539.v10i1.61622
Kusuma, T. A. A. H., Usman, K., & Saidah, S. (2021). People Counting for Public Transportations Using You Only Look Once Method. Jurnal Teknik Informatika (Jutif), 2(1), 57–66. https://doi.org/10.20884/1.jutif.2021.2.2.77 DOI: https://doi.org/10.20884/1.jutif.2021.2.2.77
Kuznetsova, A., Maleva, T., & Soloviev, V. (2020). Detecting Apples in Orchards Using YOLOv3 and YOLOv5 in General and Close-Up Images (pp. 233–243). https://doi.org/10.1007/978-3-030-64221-1_20 DOI: https://doi.org/10.1007/978-3-030-64221-1_20
Mulyana, D. I., & Rofik, M. A. (2022). Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5. Jurnal Pendidikan Tambusai, 6(3), 13971–13982. https://doi.org/10.31004/jptam.v6i3.4825 DOI: https://doi.org/10.31004/jptam.v6i3.4825
Murtando, H., Sahiri, N., & Madauna, I. (2016). Identifikasi Karakter Morfologi dan Anatomi Tanaman Jeruk Lokal (Citrus Sp) di Desa Karya Abadi Kecamatan Taopa Kabupaten Parigi Moutong. Agrotekbis, 4(6), 642–649.
Musahada, L. C. (2023). Komparasi Model Deteksi dan Penghitungan Objek Jeruk Mandarin (Citrus Reticulata Blanco cv Batu 55) dengan Label Tunggal dan Label Ganda Berbasis Convolutional Neural Network Menggunakan YOLOv7. Universitas Brawijaya.
Nashrullah, F., Wibowo, S. A., & Budiman, G. (2020). The Investigation of Epoch Parameters in ResNet-50 Architecture for Pornographic Classification. Journal of Computer, Electronic, and Telecommunication, 1(1). https://doi.org/10.52435/complete.v1i1.51 DOI: https://doi.org/10.52435/complete.v1i1.51
Nuha, M. S., & Alexandro H., R. (2022). Pemanfaatan Yolo untuk Pengenalan Kesegaran Buah Mangga. Joutica, 7(1), 513. https://doi.org/10.30736/jti.v7i1.747 DOI: https://doi.org/10.30736/jti.v7i1.747
Padilla, R., Netto, S. L., & da Silva, E. A. B. (2020). A Survey on Performance Metrics for Object-Detection Algorithms. 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), 237–242. https://doi.org/10.1109/IWSSIP48289.2020.9145130 DOI: https://doi.org/10.1109/IWSSIP48289.2020.9145130
Purno, A., & Wibowo, W. (2016). Implementasi Teknik Computer Vision Dengan Metode Colored Markers Trajectory Secara Real Time. Jurnal Teknik Informatika, 8(1).
Shianto, K. A., Gunadi, K., & Setyati, E. (2019). Deteksi Jenis Mobil Menggunakan Metode YOLO Dan Faster R-CNN. Jurnal INFRA, 7(1).
Tiyar, R. I., & Fudholi, D. H. (2021). Kajian Pengaruh Dataset dan Bias Dataset terhadap Performa Akurasi Deteksi Objek. PETIR, 14(2), 258–268. https://doi.org/10.33322/petir.v14i2.1350 DOI: https://doi.org/10.33322/petir.v14i2.1350
Tuwo, M., Tambaru, E., & Marianty, N. (2022). Respon Pertumbuhan Biji Jeruk Keprok Citrus reticulata Blanco Pada Beberapa Teknik Sterilisasi. Jurnal Ilmu Alam Dan Lingkungan, 13(2), 32–39. https://journal.unhas.ac.id/index.php/jai2
Widyawati, W., & Febriani, R. (2021). Real-time detection of fruit ripeness using the YOLOv4 algorithm. Teknika: Jurnal Sains Dan Teknologi, 17(2), 205. https://doi.org/10.36055/tjst.v17i2.12254 DOI: https://doi.org/10.36055/tjst.v17i2.12254
Zitnick, C. L., & Dollár, P. (2014). Edge Boxes: Locating Object Proposals from Edges (pp. 391–405). https://doi.org/10.1007/978-3-319-10602-1_26 DOI: https://doi.org/10.1007/978-3-319-10602-1_26
License
Copyright (c) 2024 Dimas Firmanda Al Riza, Inggit Kresna Maharsih, Surya Huda
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).