Classification quality of black tea using digital image-based CNN method
Authors
Aprilia Nur Komariyah , Bagas Rohmatulloh , Yusuf Hendrawan , Sandra Malin Sutan , Dimas Firmanda Al Riza , Mochamad Bagus HermantoDOI:
10.29303/jrpb.v11i2.542Published:
2023-09-27Issue:
Vol. 11 No. 2 (2023): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
AlexNet, black tea, classification, CNN, ResNet50Articles
Downloads
How to Cite
Downloads
Abstract
As a tropical country, the production of black tea in Indonesia is very huge. Because of its quality, black tea in Indonesia has been exported to many countries. To meet the required quality standards, black tea is classified into three grades, we mention it as grade A, grade B, and grade C. However, the industries have suffered from lack of standard of quality control because they are still using manual methods. The purpose of this study was to classify three quality levels of black tea automatically using a convolutional neural network (CNN) based on deep learning. Two types of pre-trained networks were used in this study such as AlexNet and ResNet50. From the sensitivity analysis results showed very high accuracy in the training and validation process. Three best CNN models i.e AlexNet with Adam solver and learning rate 0.00005; AlexNet with RMSProp solver and learning rate 0.0001; ResNet50 with SGDm solver and learning rate 0.00005 were able to achieve training and validation accuracy up to 100%. The classification accuracy based on results from pre-trained AlexNet with Adam solver can classify Grade B and Grade C perfectly 100% without the slightest error. But, for Grade A the average accuracy was 99,7%. Meanwhile, from the confusion matrix result using AlexNet with RMSProp solver and learning rate 0.0001; ResNet50 with SGDm solver and learning rate 0.00005 can perfectly classified the black tea. From the results, it can be concluded that the CNN model can work effectively to classify black tea.
References
Alzubaidi, L. et al. (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, Journal of Big Data. Springer International Publishing. doi: 10.1186/s40537-021-00444-8. DOI: https://doi.org/10.1186/s40537-021-00444-8
Anton, A. et al. (2021) ‘Application of Deep Learning Using Convolutional Neural Network (CNN) Method For Women’s Skin Classification’, Scientific Journal of Informatics, 8(1), pp. 144–153. doi: 10.15294/sji.v8i1.26888. DOI: https://doi.org/10.15294/sji.v8i1.26888
Celano, G. G. A. (2021) ‘A ResNet-50-based Convolutional Neural Network Model for Language ID Identification from Speech Recordings’, SIGTYP 2021 - 3rd Workshop on Research in Computational Typology and Multilingual NLP, Proceedings of the Workshop, pp. 136–144. doi: 10.18653/v1/2021.sigtyp-1.13. DOI: https://doi.org/10.18653/v1/2021.sigtyp-1.13
Gill, G. S., Kumar, A. and Agarwal, R. (2013) ‘Nondestructive grading of black tea based on physical parameters by texture analysis’, Biosystems Engineering, 116(2), pp. 198–204. doi: 10.1016/j.biosystemseng.2013.08.002. DOI: https://doi.org/10.1016/j.biosystemseng.2013.08.002
Hakim, A. A. (2021) ‘Klasifikasi Human Activity Recognition Menggunakan Metode CNN’, Jurnal Repositor, 3(2). doi: 10.22219/repositor.v3i2.1265. DOI: https://doi.org/10.22219/repositor.v3i2.1265
Hendrawan, Y. et al. (2022) ‘Deep Learning to Detect and Classify the Purity Level of Luwak Coffee Green Beans’, Pertanika Journal of Science and Technology, 30(1), pp. 1–18. doi: 10.47836/pjst.30.1.01. DOI: https://doi.org/10.47836/pjst.30.1.01
Hendrawan, Y. et al. (2021) ‘Classification of soybean tempe quality using deep learning’, IOP Conference Series: Earth and Environmental Science, 924(1), pp. 1–9. doi: 10.1088/1755- 1315/924/1/012022. DOI: https://doi.org/10.1088/1755-1315/924/1/012022
Irfansyah, D., Mustikasari, M. and Suroso, A. (2021) ‘Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi’, Jurnal Informatika: Jurnal pengembangan IT (JPIT), 6(2), pp. 87–92. Available at: http://ejournal.poltektegal.ac.id/index.php/informatika/article/view/2802. DOI: https://doi.org/10.30591/jpit.v6i2.2802
Jepkoech, J. et al. (2021) ‘The Effect of Adaptive Learning Rate on the Accuracy of Neural Networks’, International Journal of Advanced Computer Science and Applications, 12(8), pp. 736–751. doi: 10.14569/IJACSA.2021.0120885. DOI: https://doi.org/10.14569/IJACSA.2021.0120885
Lin, H. et al. (2019) ‘Robust classification of tea based on multi-channel LED-induced fluorescence and a convolutional neural network’, Sensors (Switzerland), 19(21), pp. 1–9. doi: 10.3390/s19214687. DOI: https://doi.org/10.3390/s19214687
Naufal, M. F. et al. (2021) ‘Analisis Perbandingan Algoritma Klasifikasi Citra Chest X-ray Untuk Deteksi Covid-19’, Teknika, 10(2), pp. 96–103. doi: 10.34148/teknika.v10i2.331. DOI: https://doi.org/10.34148/teknika.v10i2.331
Ngafifi, M. (2014) ‘Kemajuan Teknologi Dan Pola Hidup Manusia Dalam Perspektif Sosial Budaya’, Jurnal Pembangunan Pendidikan: Fondasi dan Aplikasi, 2(1), pp. 33–47. doi: 10.21831/jppfa.v2i1.2616. DOI: https://doi.org/10.21831/jppfa.v2i1.2616
Nurohman, Lirphandari RH, Dwiastuti R. Analisis Kinerja Pasar Benih Padi Di Kabupaten Madiun. J Ekon Pertan dan Agribisnis. 2018;2(5):405-416. doi:10.21776/ub.jepa.2018.002.05.6 DOI: https://doi.org/10.21776/ub.jepa.2018.002.05.6
Rochmawati, N. et al. (2021) ‘Analisa Learning Rate dan Batch Size pada Klasifikasi Covid Menggunakan Deep Learning dengan Optimizer Adam’, Journal of Information Engineering and Educational Technology, 5(2), pp. 44–48. doi: 10.26740/jieet.v5n2.p44-48. DOI: https://doi.org/10.26740/jieet.v5n2.p44-48
Roy, R. B. et al. (2014) ‘Improved classification of black tea employing feature level fusion of electronic nose and tongue responses’, International Conference on Control, Instrumentation, Energy and Communication, CIEC 2014, pp. 166–170. doi: 10.1109/CIEC.2014.6959071. DOI: https://doi.org/10.1109/CIEC.2014.6959071
Saleem, M. A. et al. (2022) ‘Comparative Analysis of Recent Architecture of Convolutional Neural Network’, 2022. DOI: https://doi.org/10.1155/2022/7313612
Sari, E. I., Prasetya, N. H. and Lubis, R. S. (2021) ‘Black Tea Grade Classification Using Probabilistic Neural Network ( PNN ) Corresponding Author ’:, 2(1), pp. 7–12.
Setiawan, W. et al. (2021) ‘Deep Convolutional Neural Network AlexNet and Squeezenet for Maize Leaf Diseases Image Classification’, Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4, pp. 0–7. doi: 10.22219/kinetik.v6i4.1335. DOI: https://doi.org/10.22219/kinetik.v6i4.1335
Wardana, B. K., Rachmawati, E. and Wirayuda, T. A. B. (2021) ‘Pengenalan Gestur Tangan Statis Menggunakan CNN Dengan Arsitektur Efficient-Net B4’, 8(2), pp. 3446–3463.
Wikarta, A., Sigit Pramono, A. and Ariatedja, J. B. (2020) ‘Analisa Bermacam Optimizer Pada Convolutional Neural Network Untuk Deteksi Pemakaian Masker Pengemudi Kendaraan’, Seminar Nasional Informatika, 2020(Semnasif), pp. 69–72.
Zakariyah MY. 2014. Analisis Daya Saing Teh Indonesia di Pasar Internasional. Agrimeta: Jurnal Pertanian Berbasis Keseimbangan Ekosistem. Volume 4, Nomor 8, Halaman 29- 37. Denpasar: Universitas Mahsaraswati Denpasar
License
Copyright (c) 2023 aprilia nur
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).