SIFAT FISIK DAN MEKANIS LEMBARAN KERING SELULOSA BAKTERI BERBAHAN DASAR LIMBAH HASIL PERTANIAN

  • I Wayan Sweca Yasa Fakultas Teknologi Pangan dan Agroindustri, Universitas Mataram
  • Eko Basuki Fakultas Teknologi Pangan dan Agroindustri, Universitas Mataram
  • Satrijo Saloko Fakultas Teknologi Pangan dan Agroindustri, Universitas Mataram
  • Dody Handito Fakultas Teknologi Pangan dan Agroindustri, Universitas Mataram
Keywords: limbah, pemurnian, selulosa

Abstract

Bioselulosa (BS) terutama selulosa bakteri, tingkat kemurniannya tergantung dari bahan baku pembuatan BS, metode pemurnian dan proses asetilasi. Penelitian ini bertujuan untuk mengidentifikasi jenis bahan limbah pertanian dan metode pemurnian yang tepat untuk mendapatkan karakteristik BS kering dengan sifat fisik dan mekanis sesuai dengan standar bahan plastik mudah terurai (biodegradable). Penelitian dilaksanakan melalui percobaan di laboratorium. Percobaan ditata menggunakan rancangan acak lengkap faktorial dengan dua faktor. Faktor pertama adalah bahan baku selulosa bakteri, yang terdiri atas 3 aras, yaitu 1). Sumber C dari air kelapa, 2). Whey tahu dan 3). Kulit dan bongkol nenas. Faktor kedua adalah metode pemurnian BS dengan 2 aras perlakuan, yaitu 1). Hidrolisis BS dengan NaOH 0,1% bertemperatur 100°C selama 30 menit dan 2). Hidrolisis BS dengan NaOH 0,1% bertemperatur 30°C selama 24 jam. Data dianalisis menggunakan analisis keragaman pada taraf nyata 5 persen dan uji lanjut menggunakan uji Beda Nyata Jujur pada taraf nyata yang sama. Hasil percobaan menunjukkan bahwa sifat fisik dan mekanis BS kering tidak dipengaruhi oleh interaksi antara jenis bahan baku BS dan metode pemurnian. Bahan baku BS kering yang dibuat dari air kelapa limbah pembuatan kopra memiliki sifat fisik dan mekanis yang terbaik dengan warna coklat krem, permukaan halus, sedikit kerutan, ketebalan dan rendemen berturut turut sebesar 0,11 cm dan 5,35%, serta kuat tarik 74,40 MPa, elongasi 7,36% dan modulus Young 2664,16. Pemurnian BS denganNaOH 0,1% bertemperatur 100°C selama 30 menit menghasilkan BS kering dengan sifat fisik dan mekanis yang lebih baik dibandingkan dengan NaOH 0,1% bertemperatur 30°C 24 jam.

Downloads

Download data is not yet available.

References

Ahmed, S., Kanchi, S. & Khumar, G. (2019). Handbook of Biopolymers: Advances and Multifaceted Application. Singapore: Pan Stanford Pte. Ltd.

Arrieta, M.P., Fortunati, E, Dominici F., Rayón, E., López, J., &. Kenny, J.M. (2014). PLA-PHB/Cellulose Based Films: Mechanical, Barrier and Disintegration Properties. J. Polymer Degradation and Stability, 107, 139-149.

Basak, A.K. (2013). Drying Characteristics of Bacterial Cellulose Produced FromFermentation of Black Tea by Symbiotic Colony of Yeast and Bacteria. IJSR, 4(6), 1144–1147.

Bielecki, S., Krystynowicz, A., Turkiewicz, M., Kalinowska, H. (2005). Bacterial Cellulose. In: Polysaccharides and Polyamides in the Food Industry, A. Steinbüchel, S.K. Rhee (Eds.), Wiley-VCH Verlag, Weinheim, Germany, 31–85.

Bries, A.R. (2008). The Extraction of Bioethanol from Pineapple Peelings Through Simultaneous Saccharification and Fermentation using the Yeast Saccharomyces cerevisiae. Republic of the Philippines Cumhyriyet Filipinler.

Chawla, P.R., Bajaj, I.B., Survase, S.A. & Singhal, R.S. (2009). Microbial cellulose: Fermentative production and applications. Food Technol. Biotechnol, 47(2), 107-124.

Gao, C., Yan, T., Du, J., He, F., Luo, H., &Wan, Y. (2014). Introduction of Broad Spectrum Antibacterial Properties to Bacterial Cellulose Nanofibers via Immobilising Ε-Polylysine Nanocoatings. Food Hydrocolloids, 36, 204-211.

Indrarti, L. (2007). Bioselulosa sebagai bahan edible film. Laporan Penelitian. Pusat Penelitian Fisika. LIPI.

Iryandi, A.F., Hendrawan, Y.& Nur, K. (2014). Pengaruh penambahan air jeruk nipis (Citrus aurantifolia) dan lama fermentasi terhadap karakteristik nata de soya. Bioproses Komoditas Tropis, 1(10), 8-15.

Iskandar, Zaki, M., Mulyati, S., Fathanah, U., Sari, I., & Juchairawati. (2010). Pembuatan film selulosa dari nata de pina. Rekayasa Kimia dan Lingkungan, 7(3), 105-111.

Krochta, J.M. (1992). Control of Mass Transfer in Food with Edible Coatings and Films. In: Singh, R.P. and M.A. Wirakartakusumah (eds). Advances in Food Engineering. CRP Press. Boca Raton, 519-538.

Krochta, J.M., & Johnston, C.D.M. (1997). Edible and Biodegradable Polymer Film. Challenges and Opportunities. Food Tech, 51(2), 61-74.

Kumalaningsih, S. (2014). Pohon Industri Komoditi Hasil Pertanian Pada Sistem Agroindustri. Malang: UB Press.

Lavoine, N., Desloges, I., Dufresne, A.& Bras, J. (2012). Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: Areview. Carbohydrate polymers, 90(2), 735-764.

Lin, S.P., Calvar, I, Catchmark, J.M., Liu, J.R., Demirci, A. &Cheng, K.C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20(5), 2191-2219.dd.

Lin, W.C., Lien, C.C., Yeh, H.J., Yu, C.M., & Hsu, S.H. (2013). Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydrate polymers, 94(1), 603-611.

Maryam, Dedy, R., & Yunizurwan. (2017). Processing of micro-nano bacterial cellulose with hydrolysis method as a reinforcing bioplastic. J. Phys.: Conf. Ser., 795, 1-7.

Meftahia, A., Khajavib, R., Rashidia, A., Rahimic, M.K., & Bahadord, A. (2015). Effect of Purification on Nano Microbial Cellulose Pellicle Properties. Procedia Materials Science, 11, 206–211.

Norhayati, P., Hamid, N.I.A., Khairudin N., &Zahan, K.A. (2014). Effect of Different Drying Methods on the Morphology, Crystallinity, Swelling Ability and Tensile Properties of Nata De Coco. Sains Malaysiana, 43(5), 767–773.

Nguyen, V.T., Gidley, M.J., & Dykes, G.A. (2008). Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiology, 25, 471-478.

Pérez, C.D., De’Nobili, M.D., Rizzo, S.A., Gerschenson, L.N., Descalzo, A.M., & Rojas, A.M. (2013). High Methoxyl Pectin–Methyl Cellulose Films with Antioxidant Activity at a Functional Food Interface. Journal of Food Engineering, 116, 162–169.

Pa’e, N., Hamid, N.I.A., Khaerudin, N., Zahan,K.A., Seng, K.F., Siddique, B.M., , &, Muhammad, M.I. (2014). Effect of Different Drying Methods on the Morphology, Crystallinity, Swelling Ability Tensile Properties of Nata De Coco. Sains Malaysiana, 43(5), 767–773.

Purwiyanti & Lidiasari, S. (2009). Bahan pengemas dan tepung selulosa yang dibuat dari nata de coco. AGRIA, 5(2), 24-28.

Radiman, C. & Yuliani, G. (2008). Penggunaan nata de coco sebagai bahan membran selulosa asetat. Prosiding Simposium Nasional Polimer V- Bandung.

Rahmidar, L., Wahidiniati, S., & Sudiarti, T. (2018). Pembuatan dan karakterisasi metil selulosa dari bonggol dan kulit nanas (Ananas comosus). Alotrop, 2(1), 88–96.

Raghunathan, D. (2013). Production of microbial cellulose from the new bacterial strain isolatedfrom temple wash waters. Int. J. Curr. Microbiol. App. Sci., 2(12), 275-290.

Reiniati, I., Hrymak, A. N., & Margaritis, A. (2017). Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit. Rev.Biotechnol., 37, 510–524.

Rohaeti, E, & Rahayu, T. (2012). Sifatmekanik bacterial cellulose denganmedia air kelapa dan gliserol sebagaimaterial pemlastis. Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA. FMIPA Universitas Negeri Yogyakarta.

Santos, S.M., Carbajo, J.M., Quintana, E., Ibarra, D., Gomez, N., Ladero, Eugenio, M.E.,&Villar, J.C. (2014). Characterization of purified bacterial cellulose focused on its use onpaper restoration. Carbohydrate Polymers, 116, 173-181.

Snedecor, G. W., & Cochran, W. G. (1994). Statistical methods (eighth edition). Calcutta, India: Oxford & IBH Publishing Co.

Sonia, A., & Dasan, K.P. (2013). Celluloses Microfibers (CMF)/Poly (Ethylene-Co-Vinyl Acetate) (EVA) Composites for Food Packaging Applications: A Study Based on Barrier and Biodegradation Behavior. Journal of Food Engineering, 118(1), 78-89.

Suppakul, P., Jutakorn, K., & Bangchokedee, Y. (2010). Efficacy of Cellulose-Based Coating on Enhancing The Shelf Life of Fresh Eggs. Journal of Food Engineering, 98, 207–213.

Tang, W., Jia, S., Jia, Y., & Yang, H. (2010). The influence of fermentation conditions and posttreatment methods on porosity of bacterial cellulosemembrane. World Journal of Microbiology and Biotechnology, 26(1), 125-131.

Thakhiew, W., Devahastin, S. & Soponronnarit, S. (2010). Effects of drying methods and plasticizer concentration on some physical and mechanical properties of edible chitosan films. Journal of Food Engineering, 99, 216-224.

Warisno & Dahana, K. (2009). Inspirasi Usaha Membuat Nata. Jakarta: Agro Media Pustaka.

Wijana, S., Kumalaningsih, Setyowati, A., Efendi, U., & Hidayat, N. (1991), Optimalisasi Penambahan Tepung Kulit Nanas dan Proses Fermentasi pada Pakan Ternak terhadap Peningkatan Kualitas Nutrisi. ARMP (Deptan). Universitas Brawijaya. Malang.

Zeng, M., Laromaine, A., &Roig, A. (2014). Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose, 21, 4455–4469.

Zhu, H., Jia, S., Yang, H., Tang, W., Jia, Y., &Tan, Z. (2010). Characterization of Bacteriostatic Sausage Casing: A Composite of Bacterial Cellulose Embedded with Polylysine. Food Science and Biotechnology, 19, 1479-1484.

Zimmermann, T., Bordeanu, N., &Strub, E. (2010). Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 79(4), 1086-1093.

Published
2020-03-23