Tray Dryer's Performance in the Drying of Banana Slices Using LPG and Wood Stove
Authors
Devi Yuni Susanti , Joko Nugroho Wahyu Karyadi , Octavia Arini , Septi Agustiani Fajriyah , Sri Rahayoe , Hanim Zuhrotul AmanahDOI:
10.29303/jrpb.v12i1.608Published:
2024-03-27Issue:
Vol. 12 No. 1 (2024): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
banana, drying performance, LPG, tray dryer, wood burnerArticles
Downloads
How to Cite
Downloads
Abstract
An evaluation was carried out on a simple tray dryer of banana slices in the "sale pisang" production. The dryer is designed to use gas fuel and a wood-burning stove as a source of energy. The dryer's performance is analyzed to evaluate its ability to dry the product efficiently and effectively to prevent excessive heat use. The research aims to analyze the temperature distribution in the drying chamber, the profile of the product's moisture content, the drying rate on each shelf, as well as the efficiency of dryers using gas fuel and wood-burning stoves. At an air speed of 0.0176 m3/s, the drying chamber reaches a maximum temperature of 76.2 ℃ using gas and 66.23 ℃ using a wood stove. The use of Liquid Petroleum Gas (LPG) gives an average room temperature of 73.46 ℃, while the furnace gives a less stable pattern with an average temperature of 63.02 ℃. Drying using LPG occurs more quickly with a constant drying rate and a falling rate period of 0.8262%/hour and 0.01504%/hour, higher than using wood fuel which is 0.5482%/hour and 0.0098 %/hour. Within 400 minutes, the product’s moisture content reached 24.64% using LPG and 36.762 using the furnace. The efficiency for heating the drying air is 28.51% and the drying process efficiency is 27% using 8.6 kilograms of LPG as fuel. Meanwhile, using a furnace energy source, the dryer provides a heating efficiency of 15.9% and a drying efficiency of 7.37% with a fuel consumption of 34.12 kg of wood.
References
Amer, B. M. A., Azam, M. M., & Saad, A. (2023). Monitoring Temperature Profile and Drying Kinetics of Thin-Layer Banana Slices under Controlled Forced Convection Conditions. DOI: https://doi.org/10.3390/pr11061771
Beigi, M. (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. 36(1), 145–150. https://doi.org/10.1590/1678-457X.0068 DOI: https://doi.org/10.1590/1678-457X.0068
Chitsuthipakorn, K. (2022). Effect of Large-Scale Paddy Rice Drying Process Using Hot Air Combined with Radio Frequency Heating on Milling and Cooking Qualities of Milled Rice. DOI: https://doi.org/10.3390/foods11040519
Djaeni, M., Kumoro, A. C., Sasongko, S. B., & Utari, F. D. (2018). Drying Rate and Product Quality Evaluation of Roselle ( Hibiscus sabdariffa L .) Calyces Extract Dried with Foaming Agent under Different Temperatures. 2018. DOI: https://doi.org/10.1155/2018/9243549
El-wahhab, G. G. A., Sayed, H. A. A., Abdelhamid, M. A., Zaghlool, A., Nasr, A., Nagib, A., Bourouah, M., Abd-elgawad, A. M., Rashad, Y. M., Hafez, M., & Taha, I. M. (2023). Effect of Pre-Treatments on the Qualities of Banana Dried by Two Different Drying Methods. 1–18. DOI: https://doi.org/10.3390/su152015112
Franco, T. S., Augusto, C., Souza, L. De, Ellendersen, N., & Lucia, M. (2015). Foam mat drying of yacon juice : Experimental analysis and computer simulation. JOURNAL OF FOOD ENGINEERING, 158, 48–57. https://doi.org/10.1016/j.jfoodeng.2015.02.030 DOI: https://doi.org/10.1016/j.jfoodeng.2015.02.030
Hamdani, H., Rizal, T. A., & Muhammad, Z. (2018). Fabrication and testing of hybrid solar-biomass dryer for drying fish. Case Studies in Thermal Engineering, 12(June), 489–496. https://doi.org/10.1016/j.csite.2018.06.008 DOI: https://doi.org/10.1016/j.csite.2018.06.008
Hapsari, L., & Lestari, D. A. (2016). Fruit Characteristic and Nutrient Values of Four Indonesian Banana Cultivars ( Musa spp .) at Differenet Genomic Groups. 38(81), 303–311. DOI: https://doi.org/10.17503/agrivita.v38i3.696
Jaya, I. M. A. W., Wisaniyasa, N. W., & Putra, I. N. K. (2022). The Effect of Drying Temperature and Time on the Chemical and Functional Characteristics of Couple Bean Surrounding Flour ( Vigna unguiculata ). 8(4), 57–70. DOI: https://doi.org/10.21744/irjeis.v8n4.2099
Khawas, P., Das, A., Dash, K. K., & Deka, S. C. (2014). Thin-layer drying characteristics of Kachkal banana peel ( Musa ABB ) of Thin-layer drying characteristics of Kachkal banana peel ( Musa ABB ) of Assam , India. May.
Khodabakhshi, A., Mahfeli, M., & Zarein, M. (2015). Investigation of Microwave Power Effects on. 15(4).
Kushwah, A., Kumar, A., & Kumar, M. (2023). Optimization of drying parameters for hybrid indirect solar dryer for banana slices using response surface methodology. Process Safety and Environmental Protection, 170(October 2022), 176–187. https://doi.org/10.1016/j.psep.2022.12.003 DOI: https://doi.org/10.1016/j.psep.2022.12.003
Leite, J. B., Mancini, M. C., & Borges, S. V. (2007). Effect of drying temperature on the quality of dried ´ gua bananas cv . prata and d ’ a. 40, 319–323. https://doi.org/10.1016/j.lwt.2005.08.010 DOI: https://doi.org/10.1016/j.lwt.2005.08.010
Majdi, H., & Esfahani, J. A. (2018). Energy and drying time optimization of convective drying : Taguchi and LBM methods. Drying Technology, 0(0), 1–13. https://doi.org/10.1080/07373937.2018.1458036 DOI: https://doi.org/10.1080/07373937.2018.1458036
Petikirige, J., Karim, A., & Millar, G. (2022). Review Effect of drying techniques on quality and sensory properties of tropical fruits. https://doi.org/10.1111/ijfs.16043 DOI: https://doi.org/10.1111/ijfs.16043
Prakash, O., & Kumar, A. (2017). Solar Drying Technology (2017th ed.). https://doi.org/https://doi.org/10.1007/978-981-10-3833-4 DOI: https://doi.org/10.1007/978-981-10-3833-4
Pravitha, M., Manikantan, M. R., Kumar, V. A., Beegum, P. P. S., & Pandiselvam, R. (2022). Comparison of drying behavior and product quality of coconut chips treated with different osmotic agents. LWT, 162(March), 113432. https://doi.org/10.1016/j.lwt.2022.113432 DOI: https://doi.org/10.1016/j.lwt.2022.113432
Silva, A. G. F. da, Cruz, R. R. P., Moreira, W. G., Pereira, M. A. F., Silva, A. S., Costa, F. B. da, Nascimento, A. M. do, Souza, P. A. De, Timoteo, A. L. dos S., & Ribeiro, W. S. (2021). Solar drying of ‘ Prata ’ bananas. 2061, 1–6. DOI: https://doi.org/10.1590/fst.75021
Suherman, S., Hardiyanto, H., Susanto, E. E., Utami, I. A. P., & Ningrum, T. (2020). Hybrid solar dryer for sugar-palm vermicelli drying. May. https://doi.org/10.1111/jfpe.13471 DOI: https://doi.org/10.1111/jfpe.13471
Suryani, L., Zaini, M. A., & Yasa, I. W. S. (2016). The Effect of the Concentration of Sodium Metabisulfite and Drying Method Toward Vitamin C and Organoleptic of Banana Slice ( Sale ). 2(1).
Susanti, D. Y., Budi, W., Fahrurrozi, M., & Hidayat, M. (2021). Effects of xanthan gum addition on foam properties and drying kinetics. Journal of the Saudi Society of Agricultural Sciences, 20(4), 270–279. https://doi.org/10.1016/j.jssas.2021.02.007 DOI: https://doi.org/10.1016/j.jssas.2021.02.007
Susanti, D. Y., Nugroho, J., Karyadi, W., & Mariyam, S. (2016). Drying Characteristics of Crackers from Sorghum Using Tray Dryer in Different Drying Air Velocities. November 2019. https://doi.org/10.18178/joaat.3.4.258-264 DOI: https://doi.org/10.18178/joaat.3.4.258-264
Swasdisevi, T., Devahastin, S., & Ngamchum, R. (2007). Optimization of a drying process using infrared- vacuum drying of Cavendish banana slices. October 2005.
Takougnadi, E., & Boroze, T. T. (2020). Effects of drying conditions on energy consumption and the nutritional and organoleptic quality of dried bananas. 268(October 2019), 1–9. https://doi.org/10.1016/j.jfoodeng.2019.109747 DOI: https://doi.org/10.1016/j.jfoodeng.2019.109747
Tunckal, C. (2020). Performance analysis and mathematical modelling of banana slices in a heat pump drying system. 150, 918–923. https://doi.org/10.1016/j.renene.2020.01.040 DOI: https://doi.org/10.1016/j.renene.2020.01.040
Udomkun, P., Romuli, S., Schock, S., Mahayothee, B., Sartas, M., Wossen, T., Njukwe, E., Vanlauwe, B., & Müller, J. (2020). Review of solar dryers for agricultural products in Asia and Africa : An innovation landscape approach. Journal of Environmental Management, 268, 110730. https://doi.org/10.1016/j.jenvman.2020.110730 DOI: https://doi.org/10.1016/j.jenvman.2020.110730
Wang, Z., Sun, J., Chen, F., Liao, X., & Hu, X. (2007). Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. 80, 536–544. https://doi.org/10.1016/j.jfoodeng.2006.06.019 DOI: https://doi.org/10.1016/j.jfoodeng.2006.06.019
License
Copyright (c) 2024 Devi Yuni Susanti, Joko Nugroho Wahyu Karyadi, Sri Rahayoe, Hanim Zuhrotul Amanah, Octavia Arini, Septi Agustiani Fajriyah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).