Initial Characterization of Activated Charcoal from the Indigenous Ziziphus mauritiana Wood from Dryland of Sumbawa
Authors
Lalu Heri Rizaldi , Ariskanopitasari , Nurman Muda Nasution , Widya Indriani , Ihlana Nairfana , Aluh Nikmatullah , Hery Haryanto , Muhammad SarjanDOI:
10.29303/jrpb.v11i2.536Published:
2023-09-27Issue:
Vol. 11 No. 2 (2023): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
activated charcoal, sodium hydroxide, sulphuric acid, Ziziphus mauritianaArticles
Downloads
How to Cite
Downloads
Abstract
Ziziphus mauritiana is widely found in Sumbawa arid and semi-arid area. It is a drought tolerant plant which grows in areas with extreme conditions. While information of the utilisation of Bidara seeds as activated carbon is available, there are limited resources that use Bidara woods. Therefore, this study aims to characterize the activated charcoal derived from Z. mauritiana wood which was activated using 25%, 30% and 35% of H2SO4 and NaOH. The moisture content, ash content, volatile matter, fixed carbon, and iodine absorption capacity were investigated and compared to the Indonesian National Standard (SNI. 06-3730-1995). The result showed that NaOH activated charcoal obtained higher quality compared to the H2SO4 activated charcoal. The best activated charcoal was obtained from 35% of NaOH which has 1.19% moisture content, 13.21% ash content, 1.42% volatile matter, 84.73% fixed carbon, and 1892.40 mg/g iodine number. This study concludes that the characteristics of Z. mauritiana activated charcoal (except the ash content) comply with Indonesian National Standard and potentially can be developed as an adsorbent.
References
Ajala, L. O., Ali, E. E., Obasi, N. A., Fasuan, T. O., Odewale, I. O., Igidi, J. O., & Singh, J. (2022). Insights into purification of contaminated water with activated charcoal derived from hamburger seed coat. International Journal of Environmental Science and Technology, 19(7). https://doi.org/10.1007/s13762-021-03577-8 DOI: https://doi.org/10.1007/s13762-021-03577-8
Balahmar, N., Al-Jumialy, A. S., & Mokaya, R. (2017). Biomass to porous carbon in one step: Directly activated biomass for high performance CO2 storage. Journal of Materials Chemistry A, 5(24), 12330–12339. https://doi.org/10.1039/c7ta01722g DOI: https://doi.org/10.1039/C7TA01722G
Budianto, A., Kusdarini, E., Effendi, S. S. W., & Aziz, M. (2019). The Production of Activated Carbon from Indonesian Mangrove Charcoal. IOP Conference Series: Materials Science and Engineering, 462(1), 2233–2249. https://doi.org/10.1088/1757-899X/462/1/012006 DOI: https://doi.org/10.1088/1757-899X/462/1/012006
Danish, M., & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. In Renewable and Sustainable Energy Reviews (Vol. 87, pp. 1–21). https://doi.org/10.1016/j.rser.2018.02.003 DOI: https://doi.org/10.1016/j.rser.2018.02.003
de Meira, A. M., Nolasco, A. M., Klingenberg, D., de Souza, E. C., & Dias Júnior, A. F. (2021). Insights into the reuse of urban forestry wood waste for charcoal production. Clean Technologies and Environmental Policy, 23(10), 2777–2787. https://doi.org/10.1007/s10098-021-02181-1 DOI: https://doi.org/10.1007/s10098-021-02181-1
Efiyanti, L., Paramasari, A., Hastoeti, P., Setiawan, D., & Hastuti, N. (2022). ( The characterization and adsorption properties of sulfonated carbon from andong bamboo with different particle sizes ). Jurnal Penelitian Hasil Hutan, 40(2), 115–124.
Erawati, E., & Afifah, E. F. N. (2018). Pembuatan Karbon Aktif Dari Gergaji Kayu Jati (Tectona grandis L , f) ( Ukuran Partikel dan Jenis Aktivator). The 8th University Research Colloquium 2018, 1–8.
Fansyuri, M., Nurkholis, Mikhratunnisa, Rizaldi, L. H., & Ariskanopitasari. (2023). Characteristics of bagasse briquettes using glutinous rice flour as adhesive. Jurnal Agrotek Ummat, 10(1), 1–8. DOI: https://doi.org/10.31764/jau.v10i1.12266
Fernianti, D. (2018). Karbonisasi Ampas Teh yang Sudah Diseduh dan Aktifasi Menggunakan Asam Sulfat (H2SO4). Jurnal Distilasi, 3(2), 10–15. https://jurnal.um-palembang.ac.id/distilasi/article/view/2942 DOI: https://doi.org/10.32502/jd.v2i2.1147
Gao, Y., Yue, Q., Gao, B., & Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Science of the Total Environment, 746, 9. https://doi.org/10.1016/j.scitotenv.2020.141094 DOI: https://doi.org/10.1016/j.scitotenv.2020.141094
Ghimire, J., Kumar, M., Shah, D., Raj, H., & Joshi, S. (2021). Synthesis and Characterizations of Activated Carbon from Bayer ( Ziziphus Mauritiana ) Seeds and its Possibility in Energy Storage Application. 8914, 231–236.
Hammerton, J., Joshi, L. R., Ross, A. B., Pariyar, B., Lovett, J. C., Shrestha, K. K., Rijal, B., Li, H., & Gasson, P. E. (2018). Characterisation of biomass resources in Nepal and assessment of potential for increased charcoal production. Journal of Environmental Management, 223, 358–370. https://doi.org/10.1016/J.JENVMAN.2018.06.028 DOI: https://doi.org/10.1016/j.jenvman.2018.06.028
Jamilatun, S., Salamah, S., & Isparulita, I. D. (2016). Karakteristik Arang Aktif Dari Tempurung Kelapa Dengan Pengaktivasi H2So4 Variasi Suhu Dan Waktu. Chemica: Jurnal Teknik Kimia, 2(1), 13–19. https://doi.org/10.26555/chemica.v2i1.4562 DOI: https://doi.org/10.26555/chemica.v2i1.4562
Joseph, B., Kaetzl, K., Hensgen, F., Schäfer, B., & Wachendorf, M. (2020). Sustainability assessment of activated carbon from residual biomass used for micropollutant removal at a full-scale wastewater treatment plant. Environmental Research Letters, 15(6), 064023. https://doi.org/10.1088/1748-9326/ab8330 DOI: https://doi.org/10.1088/1748-9326/ab8330
Khan, T. A., Nouman, M., Dua, D., Khan, S. A., & Alharthi, S. S. (2022). Adsorptive scavenging of cationic dyes from aquatic phase by H3PO4 activated Indian jujube (Ziziphus mauritiana) seeds based activated carbon: Isotherm, kinetics, and thermodynamic study. Journal of Saudi Chemical Society, 26(2), 101417. https://doi.org/10.1016/j.jscs.2021.101417 DOI: https://doi.org/10.1016/j.jscs.2021.101417
Latifah, H., Molo, H., & Apriani, J. (2019). Analisis Kebutuhan Kayu Dalam Pembuatan Perahu Tradisional Bego Oleh Masyarakat Sumbawa. Gorontalo Journal of Forestry Research, 2(2), 88–104. https://doi.org/10.32662/gjfr.v2i2.696 DOI: https://doi.org/10.32662/gjfr.v2i2.696
Lempang, M., Syafii, W., & Pari, G. (2011). Struktur Dan Komponen Arang Serta Arang Aktif Tempurung Kemiri. Jurnal Penelitian Hasil Hutan, 29(3), 278-294. https://doi.org/10.20886/jphh.2011.29.3.278-294 DOI: https://doi.org/10.20886/jphh.2011.29.3.278-294
Lempang, M., Syafii, W., & Pari, G. (2012). Sifat Dan Mutu Arang Aktif Tempurung Kemiri. Jurnal Penelitian Hasil Hutan, 30(2), 100–113. https://doi.org/10.20886/jphh.2012.30.2.100-113 DOI: https://doi.org/10.20886/jphh.2012.30.2.100-113
Lestari, U., Farid, F., & Fudholi, A. (2019). Formulation and Effectivity Test of Deodorant From Activated Charcoal of Palm Shell As Excessive Sweat Adsorbent on Body. Asian Journal of Pharmaceutical and Clinical Research, 12(19), 193–196. https://doi.org/10.22159/ajpcr.2019.v12i10.33490 DOI: https://doi.org/10.22159/ajpcr.2019.v12i10.33490
Lütke, S. F., Igansi, A. V., Pegoraro, L., Dotto, G. L., Pinto, L. A. A., & Cadaval, T. R. S. (2019). Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. Journal of Environmental Chemical Engineering, 7(5), 103396. https://doi.org/10.1016/j.jece.2019.103396 DOI: https://doi.org/10.1016/j.jece.2019.103396
Mariana, Abdul, A. K., Mistar, E. M., Yahya, E. B., Alfatah, T., Danish, M., & Amayreh, M. (2021). Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. In Journal of Water Process Engineering (Vol. 43, pp. 102–221). https://doi.org/10.1016/j.jwpe.2021.102221 DOI: https://doi.org/10.1016/j.jwpe.2021.102221
Massai, H., Raphael, D., & Sali, M. (2020). Adsorption of Copper Ions (Cu++) in Aqueous Solution Using Activated Carbon and Biosorbent from Indian Jujube (Ziziphus mauritiana) Seed Hulls. Chemical Science International Journal, 29(5), 13–24. https://doi.org/10.9734/csji/2020/v29i530177 DOI: https://doi.org/10.9734/CSJI/2020/v29i530177
Naji, S. Z., & Tye, C. T. (2022). A review of the synthesis of activated carbon for biodiesel production: Precursor, preparation, and modification. Energy Conversion and Management: X, 13(1), 100152. https://doi.org/10.1016/j.ecmx.2021.100152 DOI: https://doi.org/10.1016/j.ecmx.2021.100152
Neolaka, Y. A. B., Lawa, Y., Naat, J., Riwu, A. A. P., Darmokoesoemo, H., Widyaningrum, B. A., Iqbal, M., & Kusuma, H. S. (2021). Indonesian Kesambi wood (Schleichera oleosa) activated with pyrolysis and H2SO4 combination methods to produce mesoporous activated carbon for Pb(II) adsorption from aqueous solution. Environmental Technology and Innovation, 24, 101997. https://doi.org/10.1016/j.eti.2021.101997 DOI: https://doi.org/10.1016/j.eti.2021.101997
Oliveira, M., Prakash Garhwal, O., Ram Choudhary, M., Narayan Bairwa, L., Lal Kumawat, K., Kumar, P., Basile, B., Corrado, G., Rouphael, Y., & Singh Gora, J. (2022). Effects of Time of Pruning and Plant Bio-Regulators on the Growth, Yield, Fruit Quality, and Post-Harvest Losses of Ber (Ziziphus mauritiana). Horticulturae, 8(9), 809. https://doi.org/10.3390/horticulturae8090809 DOI: https://doi.org/10.3390/horticulturae8090809
Permatasari, A. R., Khasanah, L. U., & Widowati, E. (2014). Karakterisasi Karbon Aktif Kulit Singkong (Manihot Utilissima) Dengan Variasi Jenis Aktivator. Jurnal Teknologi Hasil Pertanian, 7(2). https://doi.org/10.20961/jthp.v0i0.13004 DOI: https://doi.org/10.20961/jthp.v0i0.13004
Pratiwi, R. A., & Sativa, N. (2022). Keragaman Jenis , Persebaran , dan Potensi Ziziphus Spp .( Rhamnaceae ) di. Keragaman Jenis, Persebaran, Dan Potensi Ziziphus Spp. (Rhamnaceae) Di Indonesia, December 2021, 1–16.
Rahman, A., Aziz, R., Indrawati, A., & Usman, M. (2020). Pemanfaatan beberapa jenis arang aktif sebagai bahan absorben logam berat cadmium (Cd) pada tanah sedimen drainase kota medan sebagai media tanam. Jurnal Agroteknologi Dan Ilmu Pertanian, 5(1), 42–54.
Regti, A., Laamari, M. R., Stiriba, S.-E., & El Haddad, M. (2017). The potential use of activated carbon prepared from Ziziphus species for removing dyes from waste waters. Applied Water Science, 7(7), 4099–4108. https://doi.org/10.1007/s13201-017-0567-8 DOI: https://doi.org/10.1007/s13201-017-0567-8
Riaz, M. U., Hussain, T., Raza, M. A., Saeed, A., & Ahmed, M. (2021). Variations in morphological characters and antioxidant potential of different plant parts of four ziziphus mill. Species from the cholistan. Plants, 10(12). https://doi.org/10.3390/plants10122734 DOI: https://doi.org/10.3390/plants10122734
Sakhanokho, H. F., Islam-Faridi, N., & Smith, B. J. (2022). Determination of Genome Size and Chromosome Number of a Ziziphus Species (Z. mauritiana Lam.) from Eastern Senegal. HortScience, 57(3). https://doi.org/10.21273/HORTSCI16267-21 DOI: https://doi.org/10.21273/HORTSCI16267-21
Setiaty Pandia, & Budi Warman. (2017). Pemanfaatan Kulit Jengkol Sebagai Adsorben Dalam Penyerapan Logam Cd (Ii) Pada Limbah Cair Industri Pelapisan Logam. Jurnal Teknik Kimia USU, 5(4), 57–63. https://doi.org/10.32734/jtk.v5i4.1556 DOI: https://doi.org/10.32734/jtk.v5i4.1556
Suryajaya, Haryanti, N. H., Husain, S., & Safitri, M. (2020). Preliminary study of activated carbon from water chestnut (Eleocharis dulcis). Journal of Physics: Conference Series, 1572(1), 1–8. https://doi.org/10.1088/1742-6596/1572/1/012053 DOI: https://doi.org/10.1088/1742-6596/1572/1/012053
Tan, Y. L., Islam, M. A., Asif, M., & Hameed, B. H. (2014). Adsorption of carbon dioxide by sodium hydroxide-modified granular coconut shell activated carbon in a fixed bed. Energy, 77, 926–931. https://doi.org/10.1016/j.energy.2014.09.079 DOI: https://doi.org/10.1016/j.energy.2014.09.079
Yunanda, M. Y., & Kurniawati, D. (2021). Effect of Adsorbent Dosage on Copper Ion Adsorption Using Activated Carbon of Langsat Shell (Lansium domesticum Corr) with Column Method. Indonesian Journal of Chemical Science and Technology (IJCST), 04(02), 61–65.
Zhou, J., Li, X., Yuan, J., & Wang, Z. (2022). Efficient degradation and toxicity reduction of tetracycline by recyclable ferroferric oxide doped powdered activated charcoal via peroxymonosulfate (PMS) activation. Chemical Engineering Journal, 441(1), 136061. https://doi.org/10.1016/J.CEJ.2022.136061 DOI: https://doi.org/10.1016/j.cej.2022.136061
License
Copyright (c) 2023 Lalu Heri Rizaldi, Ariskanopitasari, Nurman Muda Nasution, Widya Indriani , Ihlana Nairfana, Aluh Nikmatullah , Hery Haryanto , Muhammad Sarjan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).