Bibliometric Analysis on Recent Advances and Development of Microcontroller Application in The Postharvest System
Authors
Redika Ardi Kusuma , Rudiati Evi MasithohDOI:
10.29303/jrpb.v11i2.533Published:
2023-09-27Issue:
Vol. 11 No. 2 (2023): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
Biblioshiny, microcontroller, postharvest technology, thematic trends analysis, VOSviewerArticles
Downloads
How to Cite
Downloads
Abstract
Postharvest is a vital stage in agricultural production which is prone to causing losses due to improper implementation. Using a microcontroller that allows automation and increased precision in the postharvest process will likely reduce costs and potential losses. This research conducted a bibliometric study on applying microcontrollers in postharvest systems in Scopus-indexed publications from 2003 to 2022. The aim was to reveal microcontroller developments, evaluate current research topics, and discuss future challenges facing microcontroller applications in postharvest systems. First, this paper presents a bibliometric review of the role of microcontrollers in postharvest. Second, co-citation, coupling, and cluster analysis methods were used to analyze collaboration networks, and VOSviewer was used to visualize these networks. Third, Biblioshiny was used to analyze thematic trends of microcontroller applications. Finally, the paper discusses the challenges of using microcontrollers and provides suggestions for overcoming them. The results show that institutions from China and Italy lead research production in this field, with globally popular studies focusing primarily on fruit, digital storage, moisture determination, and cost. In addition, the thematic evolution of keywords indicating response time, cost, and design reliability issues have become basic and emerging topics in microcontroller application research for postharvest systems in recent years.
References
Affognon, H., Mutungi, C., Sanginga, P., & Borgemeister, C. (2015). Unpacking Postharvest Losses in Sub-Saharan Africa: A Meta-Analysis. World Development, 66, 49–68. https://doi.org/https://doi.org/10.1016/j.worlddev.2014.08.002 DOI: https://doi.org/10.1016/j.worlddev.2014.08.002
Arah, I. K., Ahorbo, G. K., Anku, E. K., Kumah, E. K., & Amaglo, H. (2016). Postharvest Handling Practices and Treatment Methods for Tomato Handlers in Developing Countries: A Mini Review. Advances in Agriculture, 2016, 6436945. https://doi.org/10.1155/2016/6436945 DOI: https://doi.org/10.1155/2016/6436945
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/J.JOI.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: a literature review. International Journal of Production Research, 57(15–16), 4719–4742. https://doi.org/10.1080/00207543.2017.1402140 DOI: https://doi.org/10.1080/00207543.2017.1402140
Beretta, C., Stoessel, F., Baier, U., & Hellweg, S. (2013). Quantifying food losses and the potential for reduction in Switzerland. Waste Management, 33(3), 764–773. https://doi.org/https://doi.org/10.1016/j.wasman.2012.11.007 DOI: https://doi.org/10.1016/j.wasman.2012.11.007
Chakraborty, S. K., A, S., Dubey, K., Jat, D., Chandel, N. S., Potdar, R., Rao, N. R. N. V. G., & Kumar, D. (2023). Development of an optimally designed real-time automatic citrus fruit grading–sorting machine leveraging computer vision-based adaptive deep learning model. Engineering Applications of Artificial Intelligence, 120, 105826. https://doi.org/https://doi.org/10.1016/j.engappai.2023.105826 DOI: https://doi.org/10.1016/j.engappai.2023.105826
Dal-uyen, D., Yaptenco, K., Peralta, E., & Suministrado, D. (2019). Microcontroller-based control system for safe grain storage in silo. IOP Conference Series: Earth and Environmental Science, 230(1), 12020. https://doi.org/10.1088/1755-1315/230/1/012020 DOI: https://doi.org/10.1088/1755-1315/230/1/012020
Das, A. J., Wahi, A., Kothari, I., & Raskar, R. (2016). Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness. Scientific Reports, 6(1), 32504. https://doi.org/10.1038/srep32504 DOI: https://doi.org/10.1038/srep32504
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/J.JBUSRES.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
Fan, S., Wang, Q., Tian, X., Yang, G., Xia, Y., Li, J., & Huang, W. (2020). Non-destructive evaluation of soluble solids content of apples using a developed portable Vis/NIR device. Biosystems Engineering, 193, 138–148. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2020.02.017 DOI: https://doi.org/10.1016/j.biosystemseng.2020.02.017
FAO. (2017). The future of food and agriculture: Trends and challenges. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/i6583e/i6583e.pdf
Garcı́a-Ramos, F. J., Ortiz-Cañavate, J., Ruiz-Altisent, M., Dı́ez, J., Flores, L., Homer, I., & Chávez, J. M. (2003). Development and implementation of an on-line impact sensor for firmness sensing of fruits. Journal of Food Engineering, 58(1), 53–57. https://doi.org/https://doi.org/10.1016/S0260-8774(02)00333-3 DOI: https://doi.org/10.1016/S0260-8774(02)00333-3
Giovenzana, V., Civelli, R., Beghi, R., Oberti, R., & Guidetti, R. (2015). Testing of a simplified LED based vis/NIR system for rapid ripeness evaluation of white grape (Vitis vinifera L.) for Franciacorta wine. Talanta, 144, 584–591. https://doi.org/10.1016/j.talanta.2015.06.055 DOI: https://doi.org/10.1016/j.talanta.2015.06.055
González-Buesa, J., & Salvador, M. L. (2019). An Arduino-based low cost device for the measurement of the respiration rates of fruits and vegetables. Computers and Electronics in Agriculture, 162, 14–20. https://doi.org/https://doi.org/10.1016/j.compag.2019.03.029 DOI: https://doi.org/10.1016/j.compag.2019.03.029
Hebel, M. A. (2006). Meeting wide-area agricultural data acquisition and control challenges through Zigbee wireless network technology. Computers in Agriculture and Natural Resources - Proceedings of the 4th World Congress, 234–239. https://www.scopus.com/inward/record.uri?eid=2-s2.0-35648946539&partnerID=40&md5=b26f8e000c63a3cc430d460f3845b76d
Hodges, R. J., Buzby, J. C., & Bennett, B. (2011). Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. The Journal of Agricultural Science, 149(S1), 37–45. https://doi.org/10.1017/S0021859610000936 DOI: https://doi.org/10.1017/S0021859610000936
Ibba, P., Falco, A., Abera, B. D., Cantarella, G., Petti, L., & Lugli, P. (2020). Bio-impedance and circuit parameters: An analysis for tracking fruit ripening. Postharvest Biology and Technology, 159, 110978. https://doi.org/10.1016/J.POSTHARVBIO.2019.110978 DOI: https://doi.org/10.1016/j.postharvbio.2019.110978
Isaac, N., Tamara, M., Roberto, H., Juan, K., Tim, M., Tim, R., & Fernán, F. (2017). Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering. BioRxiv, 194324. https://doi.org/10.1101/194324 DOI: https://doi.org/10.1101/194324
Jarimopas, B., & Jaisin, N. (2008). An experimental machine vision system for sorting sweet tamarind. Journal of Food Engineering, 89(3), 291–297. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2008.05.007 DOI: https://doi.org/10.1016/j.jfoodeng.2008.05.007
Kikulwe, E. M., Okurut, S., Ajambo, S., Nowakunda, K., Stoian, D., & Naziri, D. (2018). Postharvest Losses and their Determinants: A Challenge to Creating a Sustainable Cooking Banana Value Chain in Uganda. Sustainability, 10(7), 2381. https://www.mdpi.com/2071-1050/10/7/2381 DOI: https://doi.org/10.3390/su10072381
Kusuma, R. A., & Jamaludin. (2022). A Bibliometric Analysis of Post-Harvest Research and Innovations in Tackling Grain Crisis using VOSviewer. Proceedings of the International Conference on Sustainable Environment, Agriculture and Tourism (ICOSEAT 2022), 582–593. https://doi.org/10.2991/978-94-6463-086-2_79 DOI: https://doi.org/10.2991/978-94-6463-086-2_79
Mesterházy, Á., Oláh, J., & Popp, J. (2020). Losses in the Grain Supply Chain: Causes and Solutions. Sustainability, 12(6), 2342. https://www.mdpi.com/2071-1050/12/6/2342 DOI: https://doi.org/10.3390/su12062342
Mireei, S. A., Bagheri, R., Sadeghi, M., & Shahraki, A. (2016). Developing an electronic portable device based on dielectric power spectroscopy for non-destructive prediction of date moisture content. Sensors and Actuators A: Physical, 247, 289–297. https://doi.org/https://doi.org/10.1016/j.sna.2016.06.012 DOI: https://doi.org/10.1016/j.sna.2016.06.012
Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106(1), 213–228. https://doi.org/10.1007/s11192-015-1765-5 DOI: https://doi.org/10.1007/s11192-015-1765-5
Montoya, A. P., Obando, F. A., Osorio, J. A., Morales, J. G., & Kacira, M. (2020). Design and implementation of a low-cost sensor network to monitor environmental and agronomic variables in a plant factory. Computers and Electronics in Agriculture, 178, 105758. https://doi.org/https://doi.org/10.1016/j.compag.2020.105758 DOI: https://doi.org/10.1016/j.compag.2020.105758
Omidi-Arjenaki, O., Moghaddam, P., & Motlagh, A. (2012). Online tomato sorting based on shape, maturity, size, and surface defects using machine vision. Turkish Journal of Agriculture and Forestry, 37, 62–68. https://doi.org/10.3906/tar-1201-10 DOI: https://doi.org/10.3906/tar-1201-10
Pérez-Escamilla, R. (2017). Food Security and the 2015–2030 Sustainable Development Goals: From Human to Planetary Health. Current Developments in Nutrition, 1(7), e000513. https://doi.org/https://doi.org/10.3945/cdn.117.000513 DOI: https://doi.org/10.3945/cdn.117.000513
Rejeb, A., Abdollahi, A., Rejeb, K., & Treiblmaier, H. (2022). Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture, 198, 107017. https://doi.org/https://doi.org/10.1016/j.compag.2022.107017 DOI: https://doi.org/10.1016/j.compag.2022.107017
Rosales, M. M., Coronel, G. M. C., Lorilla, J. K. P., Ramos, F. J. F., Noche, J. P. V, Venal, M. C. A., & Somao–i, M. J. F. (2022). Cloud-based Portable Rice Milling Machine using Internet of Things. 2022 2nd International Conference on Intelligent Technologies (CONIT), 1–7. https://doi.org/10.1109/CONIT55038.2022.9848042 DOI: https://doi.org/10.1109/CONIT55038.2022.9848042
Sainz, B., Antolín, J., López-Coronado, M., & Castro, C. D. (2013). A Novel Low-Cost Sensor Prototype for Monitoring Temperature during Wine Fermentation in Tanks. In Sensors (Vol. 13, Issue 3, pp. 2848–2861). https://doi.org/10.3390/s130302848 DOI: https://doi.org/10.3390/s130302848
Shewfelt, R. L., Prussia, S. E., & Sparks, S. A. (2014). Chapter 2 - Challenges in Handling Fresh Fruits and Vegetables. In W. J. Florkowski, R. L. Shewfelt, B. Brueckner, & S. E. Prussia (Eds.), Postharvest Handling (Third Edition) (pp. 11–30). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-408137-6.00002-8 DOI: https://doi.org/10.1016/B978-0-12-408137-6.00002-8
Sweileh, W. M. (2020). Bibliometric analysis of peer-reviewed literature on food security in the context of climate change from 1980 to 2019. Agriculture & Food Security, 9(1), 11. https://doi.org/10.1186/s40066-020-00266-6 DOI: https://doi.org/10.1186/s40066-020-00266-6
van Raan, A. F. J., van Leeuwen, T. N., & Visser, M. S. (2011). Severe language effect in university rankings: particularly Germany and France are wronged in citation-based rankings. Scientometrics, 88(2), 495–498. https://doi.org/10.1007/s11192-011-0382-1 DOI: https://doi.org/10.1007/s11192-011-0382-1
Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391. https://doi.org/10.1016/J.JOI.2016.02.007 DOI: https://doi.org/10.1016/j.joi.2016.02.007
Wang, J., Lim, M. K., Wang, C., & Tseng, M.-L. (2021). The evolution of the Internet of Things (IoT) over the past 20 years. Computers & Industrial Engineering, 155, 107174. https://doi.org/https://doi.org/10.1016/j.cie.2021.107174 DOI: https://doi.org/10.1016/j.cie.2021.107174
Zhang, Y., & Rasmussen, K. (2020). Detection of Electromagnetic Interference Attacks on Sensor Systems. 2020 IEEE Symposium on Security and Privacy (SP), 203–216. https://doi.org/10.1109/SP40000.2020.00001 DOI: https://doi.org/10.1109/SP40000.2020.00001
Zuo, X., & Xu, L. (2013). Design of Control System for Kiwifruit Automatic Grading Machine. Sensors & Transducers, 21, 58–65.
Zupic, I., & Čater, T. (2014). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629 DOI: https://doi.org/10.1177/1094428114562629
License
Copyright (c) 2023 Redika Ardi Kusuma, Rudiati Evi Masithoh
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).