Model Denitrification Decomposition (DNDC) untuk Estimasi Emisi Gas CH4 Pada Budidaya Padi Metode SRI
Authors
Badi'atun Nihayah , Bayu Dwi Apri Nugroho , Nur Aini Iswati HasanahDOI:
10.29303/jrpb.v10i1.278Published:
2022-03-24Issue:
Vol. 10 No. 1 (2022): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
emisi CH4, model DNDC, padi, pupuk, System of Rice IntensificationArticles
Downloads
How to Cite
Downloads
Abstract
Budidaya padi merupakan salah satu sektor pertanian yang menyumbang emisi gas rumah kaca terutama CH4. Upaya penurunan emisi gas CH4 pada penelitian ini dilakukan dengan mengintegrasikan komponen teknologi antara varietas, penggunaan pupuk dan irigasi berselang melalui metode budidaya System of Rice Intensification. Penelitian ini bertujuan untuk mengetahui pengaruh varietas dan pemupukan terhadap emisi gas CH4 selama satu musim tanam serta melakukan pemodelan simulasi untuk estimasi emisi CH4. Model yang digunakan adalah Denitrification-Decomposition (DNDC) berdasarkan parameter data input kondisi iklim, sifat tanah dan praktik manajemen pertanian (termasuk pemupukan, irigasi, pengolahan tanah, produksi biomassa). Rancangan yang digunakan adalah Nested Design dengan dua faktor perlakuan, yaitu pemupukan yang terdiri dari 1) Pupuk kandang dan MOL (P1); 2) Pupuk kandang, ZA, SP36 dan KCl (P2); dan perlakuan varietas 1) Ciherang dan 2) IR-64. Hasil observasi menunjukkan bahwa perlakuan pemupukan P2-C menghasilkan total emisi CH4 13,41% lebih rendah daripada P1-C dan perlakuan P2-IR 39,43% dibanding P1-IR. Begitu pula hasil simulasi DNDC yang menunjukkan bahwa perlakuan pemupukan (P2) menghasilkan total emisi CH4 dari kedua varietas, yaitu Ciherang 53,57% dan IR-64 sebesar 58,74% lebih rendah dibanding pemupukan (P1). Evaluasi model antara hasil observasi dan simulasi DNDC menunjukkan nilai R2 dan RMSE setiap perlakuan, yaitu P1-C; P1-IR; P2-C dan P2-IR berturut-turut sebesar (R2 = 0,65; RMSE = 13,19); (R2 = 0,003; RMSE = 3,55); (R2 = 0,17; RMSE = 32,06) dan (R2 = 0,35; RMSE = 12,25). Sehingga dapat dikatakan bahwa hasil simulasi DNDC belum cukup memuaskan dan dibutuhkan kalibrasi.
References
Abdalla, M., Jones, M., Yeluripati, J., Smith, P., Burke, J., & Williams, M. (2010). Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture. Atmospheric Environment, 44(25), 2961–2970. https://doi.org/https://doi.org/10.1016/j.atmosenv.2010.05.018
Arif, C., Setiawan, B. I., Widodo, S., Rudiyanto, Hasanah, N. A. I., Mizoguchi, M. (2015). Pengembangan model jaringan saraf tiruan untuk menduga emisi gas rumah kaca dari lahan sawah dengan berbagai rejim air. Jurnal Irigasi, 10 (1), 1–10.
Aulakh, M. S., Bodenbender, J., Wassmann, R., & Rennenberg, H. (2000). Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutrient Cycling in Agroecosystems, 58(1–3), 367–375. https://doi.org/10.1023/A:1009839929441
Babu, Y. J., Li, C., Frolking, S., Nayak, D. R., & Adhya, T. K. (2006). Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutrient Cycling in Agroecosystems, 74(2), 157–174. https://doi.org/10.1007/s10705-005-6111-5
Balitbangtan. (2016). Varietas Rendah Emisi Gas Rumah Kaca.
BBPADI. (2019). BBPADI - Top 10 Varietas Padi Tahun 2018.
BPS. (2020). Badan Pusat Statistik. pp. 335–358. https://doi.org/10.1055/s-2008-1040325
Cai, Z., Shan, Y., & Xu, H. (2007). Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Science and Plant Nutrition, 53 (4), 353-361. https://doi.org/10.1111/j.1747-0765.2007.00153.x
Yunianti, I. F., Ningrum, H. Y., & Ariani, M. (2020). Pengaruh Pemberian Variasi Bahan Organik Terhadap Peningkatan Produksi Padi dan Penurunan Emisi Metana (CH4) di Lahan Sawah Tadah Hujan. Jurnal Ecolab, 14(2), 79–90. https://doi.org/10.20886/jklh.2020.14.2.79-90
Giltrap, D. L., Li, C., & Saggar, S. (2010). DNDC: A process-based model of greenhouse gas fluxes from agricultural soils. Agriculture, Ecosystems and Environment, 136(3–4), 292–300. https://doi.org/10.1016/j.agee.2009.06.014
IRRI. (1990). International Rice Research Institute. Journal of Tropical Ecology, 6(1), 90. https://doi.org/DOI: 10.1017/S0266467400004065
Katayanagi, N., Fumoto, T., Hayano, M., Takata, Y., Kuwagata, T., Shirato, Y., Sawano, S., Kajiura, M., Sudo, S., Ishigooka, Y., & Yagi, K. (2016). Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model. Science of The Total Environment, 547, 429–440. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.12.149
Kludze, H. K., DeLaune, R. D., & Patrick Jr., W. H. (1993). Aerenchyma Formation and Methane and Oxygen Exchange in Rice. Soil Science Society of America Journal, 57(2), 386–391. https://doi.org/https://doi.org/10.2136/sssaj1993.03615995005700020017x
Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37(1), 25–50. https://doi.org/https://doi.org/10.1016/S1164-5563(01)01067-6
Li, C., Frolking, S., & Frolking, T. A. (1992). A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications. Journal of Geophysical Research: Atmospheres, 97(D9), 9777–9783. https://doi.org/https://doi.org/10.1029/92JD00510
Rahmat, A., Arif, C., & Chadirin, Y. (2018). Greenhouse Gas Estimation In Various Water Management Using Denitrification-Decomposition Model ( DNDC ): 11–20.
Rivera, A., Bravo, C., & Buob, G. (2017). Climate Change and Land Ice. In International Encyclopedia of Geography: People, the Earth, Environment and Technology. https://doi.org/10.1002/9781118786352.wbieg0538
Schütz, H., Seiler, W., & Conrad, R. (1989). Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 7(1), 33–53. https://doi.org/10.1007/BF00000896
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarlg, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., & Towprayoon, S. (2007). Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 118(1–4), 6–28. https://doi.org/10.1016/j.agee.2006.06.006
Stoop, W. A., Uphoff, N., & Kassam, A. (2002). A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers. Agricultural Systems, 71(3), 249–274. https://doi.org/https://doi.org/10.1016/S0308-521X(01)00070-1
Sutton-Grier, A. E., & Megonigal, J. P. (2011). Plant species traits regulate methane production in freshwater wetland soils. Soil Biology and Biochemistry, 43(2), 413–420. https://doi.org/10.1016/j.soilbio.2010.11.009
Tong, C., Wang, W. Q., Zeng, C. S., & Marrs, R. (2010). Methane (CH4) emission from a tidal marsh in the Min River estuary, southeast China. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 45(4), 506–516. https://doi.org/10.1080/10934520903542261
Wang, Z. P., DeLaune, R. D., Masscheleyn, P. H., and Patrick, J. W. H. (1993). Soil Redox and pH Effects on Methane Production in a Flooded Rice Soil. Soil Science Society of America Journal, 57(2), 382-385.
Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., & Peñuelas, J. (2017). Factors related with CH4 and N2O emissions from a paddy field: Clues for management implications. PLoS ONE, 12(1), 1–23. https://doi.org/10.1371/journal.pone.0169254
Wang, Z., Delaune, R. D., Lindau, C. W., & Patrick, W. H. (1992). Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers. Fertilizer Research, 33(2), 115–121. https://doi.org/10.1007/BF01051166
Wihardjaka, A. (2015). Mitigation of Methane Emission Through Lowland Management. J. Litbang Pert. 34(3), 95–104.
Yang, N., Lü, F., He, P., & Shao, L. (2011). Response of methanotrophs and methane oxidation on ammonium application in landfill soils. Applied Microbiology and Biotechnology, 92(5), 1073–1082. https://doi.org/10.1007/s00253-011-3389-x
Zhao, Z., Cao, L., Deng, J., Sha, Z., Chu, C., Zhou, D., Wu, S., & Lv, W. (2020). Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model. Agricultural Systems, 178(November 2019), 102743. https://doi.org/10.1016/j.agsy.2019.102743
Xunhua, Z., Mingxing, W., Yuesi, W., Renxing, S., Jing, L., Heyer, J., Koegge, M., Papen, H., Jisheng, J., & Laotu, L. (2000). Mitigation Options for Methane, Nitrous Oxide and Nitric Oxide Emissions from Agricultural Ecosystems. Advances in Atmospheric Sciences, 17(1), 83–92. https://doi.org/10.1007/s00376-000-0045-2
License
Copyright (c) 2022 Badi'atun Nihayah, Bayu Dwi Apri Nugroho, Nur Aini Iswati Hasanah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).