Theoretical Study of Thermal Characteristics of Energy Crop Biomass Combustion Under Various Air Conditions in an Adiabatic Furnace
Authors
Haris Mawardi , Edy Hartulistiyoso , Muhamad YuliantoDOI:
10.29303/jrpb.v12i2.659Published:
2024-09-29Issue:
Vol. 12 No. 2 (2024): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
combustion air, energy crops, numerical simulation, thermal characteristicsArticles
Downloads
How to Cite
Downloads
Abstract
Combustion is an energy conversion method involving the reaction of fuel and oxygen to generate heat. Coal remains predominant in Indonesia’s energy mix, contributing to over 50% of global CO2 emissions. Efforts to reduce these emissions include using renewable energy sources like biomass, with current potential in energy crop biomass such as gamal and sengon wood. However, the thermal characteristics of burning gamal and sengon wood have not been extensively studied. This paper discusses the theoretical thermal characteristics of gamal and sengon wood combustion through numerical simulation using a combustion equilibrium model in an adiabatic furnace under stoichiometric, excess air, and excess fuel conditions. Thermodynamic calculations will be validated against experimental data. The simulation results show that the thermal characteristics of gamal combustion are superior to those of sengon. Adjustments in air supply can impact combustion quality, where excess air is often necessary to mitigate environmental factors disrupting theoretical stoichiometric combustion. Optimal combustion conditions are achieved at equivalence ratios of 1.3 for gamal and sengon. Validation using Mean Absolute Percentage Error (MAPE) indicates low error values (8,55%) affirming the model’s ability to predict thermal characteristics accurately.
References
Al-Arkawazi, S. A. F. (2019). Analyzing and predicting the relation between air–fuel ratio (AFR), lambda (λ) and the exhaust emissions percentages and values of gasoline-fueled vehicles using versatile and portable emissions measurement system tool. SN Applied Sciences, 1(11), 1–12. https://doi.org/10.1007/s42452-019-1392-5 DOI: https://doi.org/10.1007/s42452-019-1392-5
Ang, T., Salem, M., Kamarol, M., Shekhar, H., Alhuyi, M., & Prabaharan, N. (2022). A comprehensive study of renewable energy sources : Classifications , challenges and suggestions. Energy Strategy Reviews, 43(November 2021), 100939. https://doi.org/10.1016/j.esr.2022.100939 DOI: https://doi.org/10.1016/j.esr.2022.100939
Aniszewska, M., & Gendek, A. (2014). Comparison of heat of combustion and calorific value of the cones and wood of selected forest trees species. Forest Research Papers, 75(3), 231–236. https://doi.org/10.2478/frp-2014-0022 DOI: https://doi.org/10.2478/frp-2014-0022
Antar, E., & Robert, E. (2024). Thermodynamic analysis of small-scale polygeneration systems producing natural gas , electricity , heat , and carbon dioxide from biomass. Energy, 290(June 2023), 130278. https://doi.org/10.1016/j.energy.2024.130278 DOI: https://doi.org/10.1016/j.energy.2024.130278
Asadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074 DOI: https://doi.org/10.1016/j.rser.2013.08.074
Becker, S., Bouzdine-chameeva, T., & Jaegler, A. (2020). The carbon neutrality principle : A case study in the French spirits sector. Journal of Cleaner Production, 274, 122739. https://doi.org/10.1016/j.jclepro.2020.122739 DOI: https://doi.org/10.1016/j.jclepro.2020.122739
Boateng, A. A. (2016). Combustion and Flame. In Rotary Kilns (pp. 107–143). Elsevier Inc. https://doi.org/10.1016/b978-0-12-803780-5.00006-x DOI: https://doi.org/10.1016/B978-0-12-803780-5.00006-X
BPS. (2023a). Neraca Arus Energi Dan Neraca Emisi Gas Rumah Kaca Indonesia 2017-2021. https://www.bps.go.id/publication/2023/06/28/ccdf82fff5e589f7ec285169/neraca-arus-energi-dan-neraca-emisi-gas-rumah-kaca-indonesia-2017-2021.html
BPS. (2023b). Neraca Energi Indonesia 2018-2022 (Vol. 25).
Çengel, Y. A., & Boles, M. A. (2015). Thermodynamics: An Engineering Approach (8th ed.). McGraw-Hill Education.
Ciccone, B., Murena, F., Ruoppolo, G., Urciuolo, M., Brachi, P., Ciccone, B., Murena, F., Ruoppolo, G., Urciuolo, M., & Brachi, P. (2024). Methanation of syngas from biomass gasification : small-scale plant. Applied Thermal Engineering, 122901. https://doi.org/10.1016/j.applthermaleng.2024.122901 DOI: https://doi.org/10.1016/j.applthermaleng.2024.122901
Deraman, M. R., Abdul Rasid, R., Othman, M. R., & Suli, L. N. M. (2019). Co-gasification of coal and empty fruit bunch in an entrained flow gasifier: A process simulation study. IOP Conference Series: Materials Science and Engineering, 702(1). https://doi.org/10.1088/1757-899X/702/1/012005 DOI: https://doi.org/10.1088/1757-899X/702/1/012005
Elorf, A., & Sarh, B. (2019). Excess air ratio effects on flow and combustion caracteristics of pulverized biomass (olive cake). Case Studies in Thermal Engineering, 13(December 2018), 100367. https://doi.org/10.1016/j.csite.2018.100367 DOI: https://doi.org/10.1016/j.csite.2018.100367
Ercan, U., Kallioğlu, M. A., Avcı, A. S., Karakaya, H., & Düz, H. (2016). Investigation of Combustion Efficiency in Flue Gases Batman City Example Investigation of Combustion Efficiency in Flue Gases : Batman City Example. 8th International Ege Energy Symposium and Exhibition (IEESE), March.
Fan, H., Feng, J., Hu, W., Li, W., & Gao, J. (2021). Effect of excess air coefficient on the combustion characteristics of a multi-stage dual swirl burner. Journal of Physics: Conference Series, 2009(1). https://doi.org/10.1088/1742-6596/2009/1/012076 DOI: https://doi.org/10.1088/1742-6596/2009/1/012076
Farahbod, F., Farahmand, S., Bagheri, N., & Bashi, S. M. (2014). Role of membrane in concentrate of oxygen: Experimental study of thermal efficiency of combustion process by concentrated oxygen. Organic Chemistry An Indian Journal, 10(7), 251–262. https://www.tsijournals.com/articles/role-ofmembrane-in-concentrate-of-oxygen-experimental-study-of-thermal-efficiency-of-combustion-process-by-concentrated-.pdf
Kang, T. L., & McKetta, J. J. (1961). Thermodynamic properties of sulfur dioxide. AIChE Journal, 7(3), 418–422. https://doi.org/10.1002/aic.690070315 DOI: https://doi.org/10.1002/aic.690070315
Kementerian ESDM. (2019). Optimalkan Hutan Tanaman Energi, Pemerintah Dorong Pembangunan PLTBm di Pulau Halmahera. Direktorat Jenderal EBTKE. https://www.esdm.go.id/id/berita-unit/direktorat-jenderal-ebtke/optimalkan-hutan-tanaman-energi-pemerintah-dorong-pembangunan-pltbm-di-pulau-halmahera
Kementerian ESDM. (2023). Capaian Kinerja Sektor ESDM Tahun 2022. 36.
Komilis, D., Kissas, K., & Symeonidis, A. (2014). Effect of organic matter and moisture on the calorific value of solid wastes: An update of the Tanner diagram. Waste Management, 34(2), 249–255. https://doi.org/10.1016/j.wasman.2013.09.023 DOI: https://doi.org/10.1016/j.wasman.2013.09.023
Krisnawati, H., Varis, E., Kallio, M., & Kanninen, M. (2011). Paraserianthes falcataria (L.) Nielsen: Ekologi, silvikultur dan produktivitas. In Center for International Forestry Research. https://doi.org/10.17528/cifor/003482
Lee, J. S., & Lau, A. K. (2017). Clarifying the uses of heating values. 1–9. https://doi.org/10.14288/1.0343474
Majstorović, A., Babić, V., & Todić, M. (2020). Carbon monoxide in the process of uncontrolled combustion - Occurrence, hazards and first aid. Journal of Physics: Conference Series, 1426(1). https://doi.org/10.1088/1742-6596/1426/1/012008 DOI: https://doi.org/10.1088/1742-6596/1426/1/012008
Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2014). Fundamentals Of Engineering Thermodynamics. In Journal of Engineering Education (Vol. 83, Issue 4). https://doi.org/10.1002/j.2168-9830.1994.tb00126.x
Munir, A., Alvi, J. Z., Qasim, S., & Ghafoor, A. (2014). Performance evaluation of a biomass boiler on the basis of heat loss method and total heat values of steam. Pakistan Journal of Agricultural Sciences, 51(1), 209–215.
Nega, T., Habtu, N. G., Tesfaye, A., Melesse, G. T., & Aswossie, E. (2022). Biomass energy conversion in a gasifier for injera baking mitad application. Heliyon, 8(12), e12128. https://doi.org/10.1016/j.heliyon.2022.e12128 DOI: https://doi.org/10.1016/j.heliyon.2022.e12128
Nilsson, T., & Niedderer, H. (2014). Undergraduate students’ conceptions of enthalpy, enthalpy change and related concepts. Chemistry Education Research and Practice, 15(3), 336–353. https://doi.org/10.1039/c2rp20135f DOI: https://doi.org/10.1039/C2RP20135F
Nussbaumer, T. (2003). Combustion and Co-combustion of Biomass : Fundamentals , Technologies , and Primary Measures for Emission Reduction †. 1510–1521. DOI: https://doi.org/10.1021/ef030031q
Paraschiv, L. S., Serban, A., & Paraschiv, S. (2020). Calculation of combustion air required for burning solid fuels (coal / biomass / solid waste) and analysis of flue gas composition. Energy Reports, 6(September), 36–45. https://doi.org/10.1016/j.egyr.2019.10.016 DOI: https://doi.org/10.1016/j.egyr.2019.10.016
Rusolono, T., Asycarya, D., & Lindboe, H. H. (2018). Biomass for Energy Prefeasibility Study. Danida: Enviromental Support Programme, 1–93. www.eaea.dk
Shinde, B. J., & Karunamurthy. (2023). Effect of excess air ratio and ignition timing on performance , emission and combustion characteristics of high speed hydrogen engine. IOP Conf. Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1161/1/012006
Sidqi, F., & Sumitra, I. D. (2019). Forecasting Product Selling Using Single Exponential Smoothing and Double Exponential Smoothing Methods. IOP Conference Series: Materials Science and Engineering, 662(3). https://doi.org/10.1088/1757-899X/662/3/032031 DOI: https://doi.org/10.1088/1757-899X/662/3/032031
Tan, L., Li, S., Li, W., SHou, E., & Lu, Q. (2014). Effects of Oxygen Staging and Excess Oxygen on O2/CO2 Combustion with a High Oxygen Concentration in a Circulating Fluidized Bed. Energy and Fuels, 28(3), 2069–2075. https://doi.org/dx.doi.org/10.1021/ef500051c DOI: https://doi.org/10.1021/ef500051c
The Engineering ToolBox. (2003a). Combustion Efficiency and Excess Air. https://www.engineeringtoolbox.com/boiler-combustion-efficiency-d_271.html
The Engineering ToolBox. (2003b). Optimal Combustion Processes - Fuel vs. Excess Air. https://www.engineeringtoolbox.com/fuels-combustion-efficiency-d_167.html
TSI. (2004). Combustion Analysis Basics: An Overview of Measurements, Methods and Calcultions Used in Combustion Analysis. https://tsi.com/getmedia/02417ee5-cccc-4dc7-80bc-f7f10924d20a/CA-basic-2980175?ext=.pdf
Vallero, D. A. (2019). Thermal reactions. In D. A. Vallero (Ed.), Air Pollution Calculations (pp. 207–218). Elsevier Inc. https://doi.org/10.1016/b978-0-12-814934-8.00009-0 DOI: https://doi.org/10.1016/B978-0-12-814934-8.00009-0
Wang, Y., Shao, Y., Darko, M., & Whalen, J. K. (2015). Exploring switchgrass and hardwood combustion on excess air and ash fouling / slagging potential : Laboratory combustion test and thermogravimetric kinetic analysis. ENERGY CONVERSION AND MANAGEMENT, 97, 409–419. https://doi.org/10.1016/j.enconman.2015.03.070 DOI: https://doi.org/10.1016/j.enconman.2015.03.070
Yulianto, M., Agustina, S. E., Hartulistiyoso, E., Nelwan, L. O., & Nurlela. (2017). Study of temperature characterization of agricultural waste in the development of stove for combine heat power. AIP Conference Proceedings, 1826. https://doi.org/10.1063/1.4979247 DOI: https://doi.org/10.1063/1.4979247
License
Copyright (c) 2024 Edy Hartulistiyoso, Haris Mawardi, Muhamad Yulianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).