Pot Skirt Configuration on the UB-03 Biomass Stove: Taguchi Approach Optimization
Authors
Bayu Rudianto , Maghriza Iskhak , Dedy Eko Rahmanto , Miftah HijriawanDOI:
10.29303/jrpb.v12i2.641Published:
2024-09-29Issue:
Vol. 12 No. 2 (2024): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
biomass stove, optimization, pot skirt, Taguchi, UB-03Articles
Downloads
How to Cite
Downloads
Abstract
A biomass stove is a technology that can utilize biomass fuel as an alternative energy source. This stove is considered effective for saving fossil energy because it uses fuels such as wood, waste, and plants so that it can reduce the effects of global warming because it can minimize the emissions it produces. In its technological development, UB-03 is a biomass stove product with compact construction and affordable prices for rural communities. However, there needs to be an increase to produce more efficient performance. In this case, additional configurations in the form of a pot skirt can be used to increase the efficiency of the biomass stove. The pot skirt is a device that focuses the fire’s direction on the load to minimize wasted heat and increase the efficiency of the biomass stove. This study used the Water Boiling Test (WBT) method for experimental testing. In addition, the Taguchi method was used to analyze the data obtained. This study aims to determine the optimum conditions of the biomass stove with the addition of a pot skirt using the Taguchi method with orthogonal array L9 (33) with three factors, namely angle (64°, 65°, 66°), number of holes (9,10,11) and hole diameter (0.8 cm, 1 cm, 1.2 cm). The results of this study indicate that the optimal configuration obtained is by adding a pot skirt at an angle of 65° with 9 holes and a hole diameter of 1 cm, where the highest efficiency value is obtained, namely 21.19%.
References
Bărbulescu, I. D., Ghica, M. V., Begea, M., Kaya, M. G. A., Teodorescu, R. I., Popa, L., Mărculescu, S. I., Cîrîc, A. I., Dumitrache, C., Lupuliasa, D., Matei, F., & Dinu-Pîrvu, C. E. (2021). Optimization of the fermentation conditions for brewing yeast biomass production using the response surface methodology and Taguchi technique. Agriculture (Switzerland), 11(12). https://doi.org/10.3390/agriculture11121237 DOI: https://doi.org/10.3390/agriculture11121237
Bentson, S., Evitt, D., Still, D., Lieberman, D., & MacCarty, N. (2022). Retrofitting stoves with forced jets of primary air improves speed, emissions, and efficiency: Evidence from six types of biomass cookstoves. Energy for Sustainable Development, 71, 104–117. https://doi.org/10.1016/j.esd.2022.09.013 DOI: https://doi.org/10.1016/j.esd.2022.09.013
Budianto, A., Nurhuda, M., & Nadhir, A. (2014). Medium Power Clay Furnace Efficiency Test. Brawijaya Physics Student Journal, 2(1). https://www.neliti.com/publications/160059/uji-efisiensi-tungku-tanah-liat-berdaya-sedang
Chica, E., & Pérez, J. F. (2019). Development and performance evaluation of an improved biomass cookstove for isolated communities from developing countries. Case Studies in Thermal Engineering, 14(March), 100435. https://doi.org/10.1016/j.csite.2019.100435 DOI: https://doi.org/10.1016/j.csite.2019.100435
Dickinson, K. L., Piedrahita, R., Coffey, E. R., Kanyomse, E., Alirigia, R., Molnar, T., Hagar, Y., Hannigan, M. P., Oduro, A. R., & Wiedinmyer, C. (2019). Adoption of improved biomass stoves and stove/fuel stacking in the REACCTING intervention study in Northern Ghana. Energy Policy, 130(November 2018), 361–374. https://doi.org/10.1016/j.enpol.2018.12.007 DOI: https://doi.org/10.1016/j.enpol.2018.12.007
Gao, N., Śliz, M., Quan, C., Bieniek, A., & Magdziarz, A. (2021). Biomass CO2 gasification with CaO looping for syngas production in a fixed-bed reactor. Renewable Energy, 167, 652–661. https://doi.org/10.1016/j.renene.2020.11.134 DOI: https://doi.org/10.1016/j.renene.2020.11.134
Harsono, S. S., Tasliman, Fauzi, M., Wibowo, R. K. K., & Supriyanto, E. (2022). Biomass Stove with Low Carbon Monoxide Emission Fueled by Solid Fuel Coffee-Husk Biopellet. Sustainability (Switzerland), 14(18). https://doi.org/10.3390/su141811192 DOI: https://doi.org/10.3390/su141811192
Hasanah, U., & Rudiyanto, B. (2021). The Effect of Number of Holes and Reflector Angle on Biomass Stove Efficiency Improvement. National Conference of Industry, Engineering and Technology, 2, 55–65.
Hasanzadeh, R., Mojaver, P., Chitsaz, A., Mojaver, M., Jalili, M., & Rosen, M. A. (2022). Biomass and low-density polyethylene waste composites gasification: Orthogonal array design of Taguchi technique for analysis and optimization. International Journal of Hydrogen Energy, 47(67), 28819–28832. https://doi.org/10.1016/j.ijhydene.2022.06.244 DOI: https://doi.org/10.1016/j.ijhydene.2022.06.244
Huang, G., Wang, S., Chang, X., Cai, S., Zhu, L., Li, Q., & Jiang, J. (2022). Emission factors and chemical profile of I/SVOCs emitted from household biomass stove in China. Science of the Total Environment, 842(June), 156940. https://doi.org/10.1016/j.scitotenv.2022.156940 DOI: https://doi.org/10.1016/j.scitotenv.2022.156940
Jain, T., & Sheth, P. N. (2019). Design of energy utilization test for a biomass cook stove: Formulation of an optimum air flow recipe. Energy, 166, 1097–1105. https://doi.org/10.1016/j.energy.2018.10.180 DOI: https://doi.org/10.1016/j.energy.2018.10.180
Kole, A. T., Zeru, B. A., Bekele, E. A., & Ramayya, A. V. (2022). Design, development, and performance evaluation of husk biomass cook stove at high altitude condition. International Journal of Thermofluids, 16(November), 100242. https://doi.org/10.1016/j.ijft.2022.100242 DOI: https://doi.org/10.1016/j.ijft.2022.100242
Lachowicz, J. I., Milia, S., Jaremko, M., Oddone, E., Cannizzaro, E., Cirrincione, L., Malta, G., Campagna, M., & Lecca, L. I. (2022). Cooking Particulate Matter: A Systematic Review on Nanoparticle Exposure in the Indoor Cooking Environment. Atmosphere, 14(1), 12. https://doi.org/10.3390/atmos14010012 DOI: https://doi.org/10.3390/atmos14010012
Maxwell, D., Gudka, B. A., Jones, J. M., & Williams, A. (2020). Emissions from the combustion of torrefied and raw biomass fuels in a domestic heating stove. Fuel Processing Technology, 199(November 2019), 106266. https://doi.org/10.1016/j.fuproc.2019.106266 DOI: https://doi.org/10.1016/j.fuproc.2019.106266
Mekonnen, B. A. (2022). Thermal efficiency improvement and emission reduction potential by adopting improved biomass cookstoves for sauce-cooking process in rural Ethiopia. Case Studies in Thermal Engineering, 38(December 2021), 102315. https://doi.org/10.1016/j.csite.2022.102315 DOI: https://doi.org/10.1016/j.csite.2022.102315
Ndukwu, M. C., Diemuodeke, E. O., Abam, F. I., Abada, U. C., Eke-emezie, N., & Simo-Tagne, M. (2020). Development and modelling of heat and mass transfer analysis of a low-cost solar dryer integrated with biomass heater: Application for West African Region. Scientific African, 10, e00615. https://doi.org/10.1016/j.sciaf.2020.e00615 DOI: https://doi.org/10.1016/j.sciaf.2020.e00615
Nurhuda, M. (2016). UB Biomass Stove Specifications Standard Wood Piece Fuel.
Oktaviani, V., & Rudiyanto, B. (2021). Effect of Reflector Hole Diameter on Biomass Stove Performance. National Conference of Industry, Engineering and Technology, 2, 35–44.
Pambudi, N. A., Laukkanen, T., Syamsiro, M., & Gandidi, I. M. (2017). Simulation of Jatropha curcas shell in gasifier for synthesis gas and hydrogen production. Journal of the Energy Institute, 90(5), 672–679. https://doi.org/10.1016/j.joei.2016.07.010 DOI: https://doi.org/10.1016/j.joei.2016.07.010
Phusrimuang, J., & Wongwuttanasatian, T. (2016). Improvements on thermal efficiency of a biomass stove for a steaming process in Thailand. Applied Thermal Engineering, 98, 196–202. https://doi.org/10.1016/j.applthermaleng.2015.10.022 DOI: https://doi.org/10.1016/j.applthermaleng.2015.10.022
Pundle, A., Sullivan, B., Means, P., Posner, J. D., & Kramlich, J. C. (2019). Predicting and analyzing the performance of biomass-burning natural draft rocket cookstoves using computational fluid dynamics. Biomass and Bioenergy, 131(February), 105402. https://doi.org/10.1016/j.biombioe.2019.105402 DOI: https://doi.org/10.1016/j.biombioe.2019.105402
Rasoulkhani, M., Ebrahimi-Nik, M., Abbaspour-Fard, M. H., & Rohani, A. (2018). Comparative evaluation of the performance of an improved biomass cook stove and the traditional stoves of Iran. Sustainable Environment Research, 28(6), 438–443. https://doi.org/10.1016/j.serj.2018.08.001 DOI: https://doi.org/10.1016/j.serj.2018.08.001
Safitri, N. M., Anwar, S., Rachmanita, R. E., & Rudiyanto, B. (2020). Study of Variation of Reflector Angle Shape on UB-03 Biomass Stove Burner. Prosiding Seminar Nasional NCIET, 1(1), 89–98. https://doi.org/10.32497/nciet.v1i1.34 DOI: https://doi.org/10.32497/nciet.v1i1.34
Sedighi, M., & Salarian, H. (2017). A comprehensive review of technical aspects of biomass cookstoves. Renewable and Sustainable Energy Reviews, 70(January), 656–665. https://doi.org/10.1016/j.rser.2016.11.175 DOI: https://doi.org/10.1016/j.rser.2016.11.175
Shaisundaram, V. S., Chandrasekaran, M., Sujith, S., Praveen Kumar, K. J., & Shanmugam, M. (2020). Design and analysis of novel biomass stove. Materials Today: Proceedings, 46, 4054–4058. https://doi.org/10.1016/j.matpr.2021.02.569 DOI: https://doi.org/10.1016/j.matpr.2021.02.569
Singh, S. K., Kaushik, S. C., Tyagi, V. V., & Tyagi, S. K. (2022). Experimental and computational investigation of waste heat recovery from combustion device for household purposes. International Journal of Energy and Environmental Engineering, 13(1), 353–364. https://doi.org/10.1007/s40095-021-00430-z DOI: https://doi.org/10.1007/s40095-021-00430-z
Stanistreet, D., Phillip, E., Kumar, N., Anderson de Cuevas, R., Davis, M., Langevin, J., Jumbe, V., Walsh, A., Jewitt, S., & Clifford, M. (2021). Which biomass stove(s) Capable of Reducing Household Air Pollution are Available to the Poorest Communities Globally? International Journal of Environmental Research and Public Health, 18(17). https://doi.org/10.3390/ijerph18179226 DOI: https://doi.org/10.3390/ijerph18179226
Subekti, P. (2012). Calculation of Energy Comparison of Rice Husk Fuel with Kerosene. Jurnal APTEK, 4(1), 41–48. http://aptekft.blogspot.com/p/edisi-januari-2012.html
Suryawanshi, S. J., Shewale, V. C., Thakare, R. S., & Yarasu, R. B. (2021). Parametric study of different biomass feedstocks used for gasification process of gasifier—a literature review. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-021-01805-2 DOI: https://doi.org/10.1007/s13399-021-01805-2
Vieira, F. R., Romero Luna, C. M., Arce, G. L. A. F., & Ávila, I. (2020). Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass and Bioenergy, 132(November 2019). https://doi.org/10.1016/j.biombioe.2019.105412 DOI: https://doi.org/10.1016/j.biombioe.2019.105412
Wijianto, Sarjito, Subroto, & Himawanto, D. A. (2018). The effect of variation number of holes on burner cap of TLUD gasification stove. IOP Conference Series: Materials Science and Engineering, 403(1). https://doi.org/10.1088/1757-899X/403/1/012097 DOI: https://doi.org/10.1088/1757-899X/403/1/012097
License
Copyright (c) 2024 Bayu Rudianto, Maghriza Iskhak, Dedy Eko Rahmanto, Miftah Hijriawan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).