Effectiveness of Dry Fractionation in Sago Pith Processing and Product Utilization for Ethanol Production
Authors
Abdurachman abdurachman , Erliza Noor , Titi Chandra Sunarti , Tajuddin Bantacut , Agus Eko Tjahjono , Musa MusaDOI:
10.29303/jrpb.v12i1.599Published:
2024-03-27Issue:
Vol. 12 No. 1 (2024): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
dry fractionation, ethanol, sago pith, simultaneous saccharification fermentation, starch rich flourArticles
Downloads
How to Cite
Downloads
Abstract
Starch is more easily converted to sugars and fermented into ethanol. To increase ethanol productivity, a high-gravity fermentation method was developed. Sago trees are starch-producing that do not compete with food crops, but conventional processing has a negative impact on the environment. An alternative technology to minimize environmental impact is dry fractionation, product characteristics are suitable for ethanol production. Analysis of the effectiveness the processing of sago pith and the use of products for ethanol has never been published, so the analysis is carried out based on vertical differences in stem parts and determination of the optimum conditions of the ethanol production using sago starch-rich flour. Yield, starch recovery, starch ennrichment and shift starch are observational variables for the analysis of dry fractionation effectiveness. Starch-rich flour from the results of dry fractionation of each group of stem parts is mixed with a uniform composition and used as a fermentation medium. The one factor at a time (OFAT) experiment design was used to determine the effect of variables on optimal response, and verification is carried out. The distribution of starch granule size, starch content and parenchyma fiber characteristics can affect the effectiveness . Ethanol productivity showed optimum results at liquifaction 80oC for 60 minutes, using simultaneous saccharification and fermentation (SSF), high gravity fermentation and self-flocating yeast. The application of dry fractionation technology to obtain ethanol raw materials from sago trees has the potential to increase the added value of sago cultivation and the economic value of ethanol to be more competitive.
References
Achudan, S. N., Mohamed, A. M. Dos, Rashid, R. S. A., & Mittis, P. (2020). Yield and physicochemical properties of starch at different sago palm stages. Materials Today: Proceedings, 31(1), 122–126. https://doi.org/https://doi.org/10.1016/j.matpr.2020.01.341 DOI: https://doi.org/10.1016/j.matpr.2020.01.341
Agu, R. C., Bringhurst, T. A., & Brosnan, J. M. (2006). Production of Grain Whisky and Ethanol from Wheat, Maize and Other Cereals. Journal of the Institute of Brewing, 112(4), 314–323. https://doi.org/https://doi.org/10.1002/j.2050-0416.2006.tb00737.x DOI: https://doi.org/10.1002/j.2050-0416.2006.tb00737.x
Antoce, O. A., Pomohaci, N., Antoce, V., Fukada, H., Takahashi, K., Kawasaki, H., Amano, N., & Amachi, T. (1996). Application of calorimetry to the study of ethanol tolerance of some yeast strains. Biocontrol Science, 1(1), 3–10. https://doi.org/10.4265/bio.1.3 DOI: https://doi.org/10.4265/bio.1.3
Aruwajoye, G. S., Kassim, A., Saha, A. K., & Gueguim Kana, E. B. (2020). Prospects for the improvement of bioethanol and biohydrogen production from mixed starch-based agricultural wastes. In Energies (Vol. 13, Issue 24). MDPI AG. https://doi.org/10.3390/en13246609 DOI: https://doi.org/10.3390/en13246609
Assatory, A., Vitelli, M., Rajabzadeh, A. R., & Legge, R. L. (2019). Dry fractionation methods for plant protein, starch and fiber enrichment: A review. Trends in Food Science & Technology, 86, 340–351. https://doi.org/https://doi.org/10.1016/j.tifs.2019.02.006 DOI: https://doi.org/10.1016/j.tifs.2019.02.006
Bantacut, T., Bintoro, M. H., Zuhud, E. A. M., Damayanthi, E., Arifin, H. S., Widanarni, & Ismayana, A. (2020). Policy Brief Pembangunan Sagu Terpadu dan Berkelanjutan 2020 (Cetakan 1,). Percetakan IPB.
Bintoro, M. H., Iqbal Nurulhaq, M., Pratama, A. J., Ahmad, F., & Ayulia, L. (2018). Growing Area of Sago Palm and Its Environment BT - Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods. In H. Ehara, Y. Toyoda, & D. V Johnson (Eds.), Sago palm (pp. 17–29). Springer Singapore. https://doi.org/10.1007/978-981-10-5269-9_2 DOI: https://doi.org/10.1007/978-981-10-5269-9_2
Bukhari, N. A., Loh, S. K., Bakar, N. A., & Ismail, M. (2017). Hydrolysis of Residual Starch from Sago Pith Residue and Its Fermentation to Bioethanol. Sains Malaysiana, 46(8), 1269–1278. https://doi.org/http://dx.doi.org/10.17576/jsm-2017-4608-12 DOI: https://doi.org/10.17576/jsm-2017-4608-12
Czitrom, V. (1999). One-Factor-at-a-Time versus Designed Experiments. The American Statistician, 53(2), 126–131. https://doi.org/10.2307/2685731 DOI: https://doi.org/10.1080/00031305.1999.10474445
Dalimunthe, L. H., Rana, G. K., Ekasari, N., Iskak, P. I., & Sutriswanto, S. (2019). Sagu (Metroxylon Sagu Rottb.) (E. Setyorini & S. Sutriswanto, Eds.; 1st ed.). Pusat Perpustakaan dan Penyebaran Teknologi Pertanian Kementrian Pertanian.
Direktorat Jenderal Perkebunan Kementrian Pertanian. (2019). Statistik Perkebunan Indonesia sagu (Sago) 2018-2020 (D. Gartina & R. L. L. Sukriya, Eds.). Sekretariat Direktorat Jenderal Perkebunan.
Flores, D., Paluga, M., & Ragragio, A. M. (2016). The Indigenous Dry Method of Sago Starch Extraction from Argao, Cebu, in the Central Philippines: Process Documentation and Flour Laboratory Analysis. In Mapping Sago: Anthropological, biophysical, and economic aspects (Issue November 2017, pp. 15–24).
Funke, M., Boom, R., & Weiss, J. (2022). Dry fractionation of lentils by air classification - Composition, interfacial properties and behavior in concentrated O/W emulsions. LWT, 154, 112718. https://doi.org/https://doi.org/10.1016/j.lwt.2021.112718 DOI: https://doi.org/10.1016/j.lwt.2021.112718
Gohel, V., & Duan, G. (2012). Conventional process for ethanol production from Indian broken rice and pearl millet. Bioprocess and Biosystems Engineering, 35(8), 1297–1308. https://doi.org/10.1007/s00449-012-0717-1 DOI: https://doi.org/10.1007/s00449-012-0717-1
Hamanishi, H., Hatta, T., Jong, F.-S., Takahashi, S., & Kainuma, K. (1999). Physicochemical Parts of Sago Properties Palm of Starches Trunks Obtained from Various at Different Growth. Journal of Applied Glycoscience, 46(1), 39–48. https://doi.org/https://doi.org/10.5458/jag.46.39 DOI: https://doi.org/10.5458/jag.46.39
Hodge, J. E., & Davis, H. A. (1952). Selected Methods for Determining Reducing Sugar. Agricultural Research Administration Bureau of Agricultural and Industrial Chemistry.
Hung, H. C., Adeni, D. S. A., Johnny, Q., & Vincent, M. (2018). Production of Bioethanol from Sago Hampas via Simultaneous Saccharification and Fermentation (SSF). Nusantara Bioscience, 10(4), 240–245. https://doi.org/DOI: 10.13057/nusbiosci/n100407 DOI: https://doi.org/10.13057/nusbiosci/n100407
Indonesia.go.id. (2023, January 20). Indonesia Boosts the Development of Bioethanol to Reduce Fuel Import. Https://Indonesia.Go.Id/Kategori/Editorial/6815/Indonesia-Boosts-the-Development-of-Bioethanol-to-Reduce-Fuel-Import?Lang=2.
Johnston, D. B. (2019). Grain sorghum fractionation in a modified dry grind ethanol process that includes production of an enriched protein fraction. Cereal Chemistry, 96(5), 920–926. https://doi.org/https://doi.org/10.1002/cche.10195 DOI: https://doi.org/10.1002/cche.10195
Kumar, D., Juneja, A., & Singh, V. (2018). Fermentation technology to improve productivity in dry grind corn process for bioethanol production. Fuel Processing Technology, 173, 66–74. https://doi.org/https://doi.org/10.1016/j.fuproc.2018.01.014 DOI: https://doi.org/10.1016/j.fuproc.2018.01.014
Lin, T., Rodríguez, L. F., Li, C., & Eckhoff, S. R. (2011). An engineering and economic evaluation of wet and dry pre-fractionation processes for dry-grind ethanol facilities. Bioresource Technology, 102(19), 9013–9019. https://doi.org/https://doi.org/10.1016/j.biortech.2011.06.013 DOI: https://doi.org/10.1016/j.biortech.2011.06.013
Lin, Y.-H., & Liu, C.-G. (2014). Process Design for Very-high-gravity Ethanol Fermentation. Energy Procedia, 61, 2725–2728. https://doi.org/https://doi.org/10.1016/j.egypro.2014.12.289 DOI: https://doi.org/10.1016/j.egypro.2014.12.289
Liu, C.-G., Wang, N., Lin, Y.-H., & Bai, F.-W. (2012). Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions. Biotechnology for Biofuels, 5(1), 61. https://doi.org/10.1186/1754-6834-5-61 DOI: https://doi.org/10.1186/1754-6834-5-61
Lu, Y., Chae, M., Vasanthan, T., & Bressler, D. C. (2020). The potential of fiber-depleted starch concentrate produced through air currents assisted particle separation of barley flour in bio-ethanol production. Bioresource Technology, 303. https://doi.org/10.1016/j.biortech.2020.122942 DOI: https://doi.org/10.1016/j.biortech.2020.122942
Mccleary, B. V, Gibson, T. S., Mugford, D. C., & Collaborators: (1997). Measurement of Total Starch in Cereal Products by Amyloglucosidase-α-Amylase Method: Collaborative Study. Journal of AOAC INTERNATIONAL, 80(3), 571–579. https://doi.org/10.1093/jaoac/80.3.571 DOI: https://doi.org/10.1093/jaoac/80.3.571
Mohammad, S., Awg-Adeni, D. S., Bujang, K. B., Vincent, M., & Baidurah, S. (2020). Potentials of sago fibre hydrolysate (SFH) as a sole fermentation media for bioethanol production. IOP Conference Series: Materials Science and Engineering, 716(1). https://doi.org/10.1088/1757-899X/716/1/012001 DOI: https://doi.org/10.1088/1757-899X/716/1/012001
Muradi, N. A., Adeni, D. S. A., & Suhaili, N. (2020). Enhancement of very high gravity bioethanol production via fed-batch fermentation using sago hampas as a substrate. Asia-Pacific Journal of Molecular Biology and Biotechnology, 28(3), 44–51. https://doi.org/10.35118/apjmbb.2020.028.3.05 DOI: https://doi.org/10.35118/apjmbb.2020.028.3.05
Myburgh, M. W., Rose, S. H., & Viljoen-Bloom, M. (2020). Evaluating and engineering Saccharomyces cerevisiae promoters for increased amylase expression and bioethanol production from raw starch. FEMS Yeast Research, 20(6). https://doi.org/10.1093/femsyr/foaa047 DOI: https://doi.org/10.1093/femsyr/foaa047
Nanlohy, L. H., & Gafur, M. A. A. (2020). Potensi Pati Sagu Dan Pendapatan Masyarakat. Median, 12(1), 21–27. https://doi.org/http://doi.org/md.v12i1.211 DOI: https://doi.org/10.33506/md.v12i1.818
Nghiem, N. P., Brooks, W. S., Griffey, C. A., & Toht, M. J. (2017). Production of Ethanol From Newly Developed and Improved Winter Barley Cultivars. Applied Biochemistry and Biotechnology, 182(1), 400–410. https://doi.org/10.1007/s12010-016-2334-y DOI: https://doi.org/10.1007/s12010-016-2334-y
Oke, M. A., Annuar, M. S. M., & Simarani, K. (2016). Mixed Feedstock Approach to Lignocellulosic Ethanol Production—Prospects and Limitations. Bioenergy Research, 9(4), 1189–1203. https://doi.org/10.1007/s12155-016-9765-8 DOI: https://doi.org/10.1007/s12155-016-9765-8
Pei-Lang, A. T., Mohamed, A. M. D., & Karim, A. A. (2006). Sago starch and composition of associated components in palms of different growth stages. Carbohydrate Polymers, 63(2), 283–286. https://www.sciencedirect.com/science/article/pii/S0144861705004546 DOI: https://doi.org/10.1016/j.carbpol.2005.08.061
Pelgrom, P. J. M., Boom, R. M., & Schutyser, M. A. I. (2015). Method development to increase protein enrichment during dry fractionation of starch-rich legumes. Food and Bioprocess …, 8(July 2015), 1495–1502. https://doi.org/10.1007/s11947-015-1513-0 DOI: https://doi.org/10.1007/s11947-015-1513-0
Pielech-Przybylska, K., Balcerek, M., Nowak, A., Wojtczak, M., Czyzowska, A., Dziekonska-Kubczak, U., & Patelski, P. (2017). The effect of different starch liberation and saccharification methods on the microbial contaminations of distillery mashes, fermentation efficiency, and spirits quality. Molecules, 22(10). https://doi.org/10.3390/molecules22101647 DOI: https://doi.org/10.3390/molecules22101647
Puligundla, P., Obulam, V. S. R., & Chulkyoon, M. (2014). Preparation of very high gravity cassava mashes and subsequent fermentation to ethanol using Saccharomyces bayanus. Romanian Biotechnological Letters, 19, 9925–9931.
Puligundla, P., Smogrovicova, D., Mok, C., & Obulam, V. S. R. (2019). A review of recent advances in high gravity ethanol fermentation. In Renewable Energy (pp. 1366–1379). Elsevier Ltd. https://doi.org/10.1016/j.renene.2018.06.062 DOI: https://doi.org/10.1016/j.renene.2018.06.062
Rempel, C., Geng, X., & Zhang, Y. (2019). Industrial scale preparation of pea flour fractions with enhanced nutritive composition by dry fractionation. Food Chemistry, 276, 119–128. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.10.003 DOI: https://doi.org/10.1016/j.foodchem.2018.10.003
Saifuddin, N., & Hussain, R. (2011). Microwave Assisted Bioethanol Production from Sago Starch by Co-Culturing of Ragi Tapai and Saccharomyces Cerevisiae. Journal of Mathematics and Statistics, 7, 198–206. https://doi.org/10.3844/jmssp.2011.198.206 DOI: https://doi.org/10.3844/jmssp.2011.198.206
Santoso, B., Sakakura, K., Naito, H., Ohmi, M., Nishimura, Y., Uchiyama, T., Itaya, A., Hisamatsu, M., Ehara, H., & Mishima, T. (2015). Effects of Micro Powder Milling on Physicochemical Properties of Sago Starch. Journal of Applied Glycoscience, 62(2), 73–80. https://doi.org/10.5458/jag.jag.jag-2015_008 DOI: https://doi.org/10.5458/jag.jag.JAG-2015_008
Schutyser, M. A. I., & der Goot, A. J. Van. (2011). The potential of dry fractionation processes for sustainable plant protein production. Trends in Food Science & Technology, 22(4), 154–164. https://doi.org/https://doi.org/10.1016/j.tifs.2010.11.006 DOI: https://doi.org/10.1016/j.tifs.2010.11.006
Snoek, T., Verstrepen, K. J., & Voordeckers, K. (2016). How do yeast cells become tolerant to high ethanol concentrations? In Current Genetics (Vol. 62, Issue 3, pp. 475–480). Springer Verlag. https://doi.org/10.1007/s00294-015-0561-3 DOI: https://doi.org/10.1007/s00294-015-0561-3
Sosulski, F. W., Nowakowski, D. M., & Reichert, R. D. (1988). Effects of Attrition Milling on Air Classification Properties of Hard Wheat Flours. Starch - Stärke, 40(3), 100–104. https://doi.org/https://doi.org/10.1002/star.19880400305 DOI: https://doi.org/10.1002/star.19880400305
Stewart, G. G. (2018). Yeast flocculation—sedimentation and flotation. In Fermentation (Vol. 4, Issue 2). MDPI AG. https://doi.org/10.3390/fermentation4020028 DOI: https://doi.org/10.3390/fermentation4020028
Strak, E., Balcerek, M., & Dziekonska-Kubczak, U. (2017). Fermentation efficiency of high-gravity rye mashes using pressureless starch liberation methods. Czech Journal of Food Sciences, 35(3), 267–273. https://cjfs.agriculturejournals.cz/artkey/cjf-201703-0012.php DOI: https://doi.org/10.17221/403/2016-CJFS
Tanco, M., Viles, E., & Pozueta, L. (2009). Comparing Different Approaches for Design of Experiments (DoE). In S.-I. Ao & L. Gelman (Eds.), Advances in Electrical Engineering and Computational Science (pp. 611–621). Springer Netherlands. https://doi.org/10.1007/978-90-481-2311-7_52 DOI: https://doi.org/10.1007/978-90-481-2311-7_52
Tie, A. P., Karim, A. A., & Manan, D. M. A. (2008). Physicochemical Properties of Starch in Sago Palms (Metroxylon sagu) at Different Growth Stages. Starch - Stärke, 60(8), 408–416. https://doi.org/https://doi.org/10.1002/star.200700707 DOI: https://doi.org/10.1002/star.200700707
Walker, G. M., & Stewart, G. G. (2016). Saccharomyces cerevisiae in the production of fermented beverages. In Beverages (Vol. 2, Issue 4). MDPI AG. https://doi.org/10.3390/beverages2040030 DOI: https://doi.org/10.3390/beverages2040030
Wang, N., & Maximiuk, L. (2019). Effect of air classification processing variables on yield, composition, and certain antinutrients of air-classified fractions from field peas by response surface methodology. Journal of Food Processing and Preservation, 43(7), e13999. https://doi.org/https://doi.org/10.1111/jfpp.13999 DOI: https://doi.org/10.1111/jfpp.13999
Wu, X., Wang, D., Bean, S. R., & Wilson, J. P. (2006). Ethanol Production from Pearl Millet Using Saccharomyces cerevisiae. Cereal Chemistry, 83(2), 127–131. https://doi.org/https://doi.org/10.1094/CC-83-0127 DOI: https://doi.org/10.1094/CC-83-0127
Xing, Q., Utami, D. P., Demattey, M. B., Kyriakopoulou, K., de Wit, M., Boom, R. M., & Schutyser, M. A. I. (2020). A two-step air classification and electrostatic separation process for protein enrichment of starch-containing legumes. Innovative Food Science & Emerging Technologies, 66, 102480. https://doi.org/https://doi.org/10.1016/j.ifset.2020.102480 DOI: https://doi.org/10.1016/j.ifset.2020.102480
Xu, Q.-S., Yan, Y.-S., & Feng, J.-X. (2016). Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnology for Biofuels, 9(1), 216. https://doi.org/10.1186/s13068-016-0636-5 DOI: https://doi.org/10.1186/s13068-016-0636-5
Yater, T., Tubur, H. W., Meliala, C., & Abbas, B. (2019). Short communication: A comparative study of phenotypes and starch production in sago palm (Metroxylon sagu) growing naturally in temporarily inundated and non inundated areas of south Sorong, Indonesia. Biodiversitas, 20(4), 1121–1126. https://doi.org/10.13057/biodiv/d200425 DOI: https://doi.org/10.13057/biodiv/d200425
Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501. https://doi.org/https://doi.org/10.1016/j.rser.2016.12.076 DOI: https://doi.org/10.1016/j.rser.2016.12.076
License
Copyright (c) 2024 Abdurachman abdurachman, Erliza Noor, Titi Chandra Sunarti, Tajuddin Bantacut, Agus Eko Tjahjono, Musa Musa
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).