VALIDASI CURAH HUJAN HARIAN CHIRPS PRECIPITATION SATELLITE PRODUCT DI PROVINSI KALIMANTAN BARAT
Authors
Joko Suryanto , Amprin , AnisumDOI:
10.29303/jrpb.v11i1.442Published:
2023-03-29Issue:
Vol. 11 No. 1 (2023): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
akurasi, CHIRPS, curah hujan, Kalimantan Barat, rain gaugeArticles
Downloads
How to Cite
Downloads
Abstract
Data curah hujan produk satelit dapat digunakan sebagai alternatif keterbatasan pengukuran curah hujan menggunakan penakar hujan. Akurasi data hujan satelit sangat bervariasi antar wilayah karena faktor lingkungan yang beragam, sehingga validasi hujan data satelit sangat diperlukan. Penelitian ini bertujuan untuk menguji akurasi data hujan harian Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) pada 7 stasiun hujan di Provinsi Kalimantan Barat. Metode point-to-pixel digunakan untuk membandingkan curah hujan harian pengamatan Badan Meteorologi Klimatologi dan Geofisika (BMKG) sepanjang 20 tahun (2002 – 2021) dengan data curah hujan CHIRPS yang bersesuaian dengan lokasi stasiun hujan. Validasi data CHIPRS menggunakan dua jenis validasi yaitu validasi kontinu dan validasi kategorial. Validasi kontinu diperoleh rata-rata korelasi Pearson (R), percent bias (Pbias), mean error (ME), mean absolute error (MAE), dan root mean square error (RMSE) adalah 0,25, 9,92 %, 0,68 mm, 12,17 mm, dan 19,82 mm. Berdasarkan nilai rata-rata percent bias dan korelasi Pearson, estimasi hujan data CHIRPS sangat baik, namun mempunyai korelasi lemah dengan data pengamatan. Validasi kategorial diperoleh nilai rata-rata probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), frequency bias index (FBI) dan Heidke skill score (HSS) adalah 0,72, 0,44, 056, 1,01, dan 0,27. Validasi kategorial menunjukkan bahwa data CHIRPS sangat baik dalam mengestimasi kejadian hujan di Kalimantan Barat.
References
Ageet, S., Fink, A. H., Maranan, M., Diem, J. E., Hartter, J., Ssali, A. L., & Ayabagabo, P. (2022). Validation of satellite rainfall estimates over equatorial east Africa. Journal of Hydrometeorology, 23(2), 129–151. https://doi.org/10.1175/JHM-D-21-0145.1 DOI: https://doi.org/10.1175/JHM-D-21-0145.1
Anjum, M. N., Irfan, M., Waseem, M., Leta, M. K., Niazi, U. M., Rahman, S. U., Ghanim, A., Mukhtar, M. A., & Nadeem, M. U. (2022). Assessment of PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0 rainfall products over a semi-arid subtropical climatic region. Water (Switzerland), 14(2). https://doi.org/10.3390/w14020147 DOI: https://doi.org/10.3390/w14020147
Ayehu, G. T., Tadesse, T., Gessesse, B., & Dinku, T. (2018). Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia. Atmospheric Measurement Techniques, 11, 1921–1936. https://doi.org/https://doi.org/10.5194/amt-11-1921-2018 DOI: https://doi.org/10.5194/amt-11-1921-2018
Bai, L., Shi, C., Li, L., Yang, Y., & Wu, J. (2018). Accuracy of CHIRPS satellite-rainfall products over mainland China. Remote Sensing, 10(3). https://doi.org/10.3390/rs10030362 DOI: https://doi.org/10.3390/rs10030362
Belay, A. S., Fenta, A. A., Yenehun, A., Nigate, F., Tilahun, S. A., Moges, M. M., Dessie, M., Adgo, E., Nyssen, J., Chen, M., Van Griensven, A., & Walraevens, K. (2019). Evaluation and application of multi-source satellite rainfall product CHIRPS to assess spatio-temporal rainfall variability on data-sparse western margins of Ethiopian highlands. Remote Sensing, 11(22), 1–22. https://doi.org/10.3390/rs11222688 DOI: https://doi.org/10.3390/rs11222688
BMKG. (2022). Probabilistik curah hujan 20 mm (tiap 24 jam). Badan Meteorologi Klimatologi Dan Geofisika. https://www.bmkg.go.id/cuaca/probabilistik-curah-hujan.bmkg
BPS Kalimantan Barat. (2021). Provinsi Kalimantan Barat dalam angka 2021. BPS Provinsi Kalimantan Barat.
Budiyono, B., & Faisol, A. (2021). Evaluasi data climate hazards group infrared precipitation with station (CHIRPS) dengan data pembanding automatic weather stations (AWS) dalam mengestimasi curah hujan harian di provinsi Papua Barat. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 10(1), 64–72. https://doi.org/10.23960/jtep-l.v10i1.64-72 DOI: https://doi.org/10.23960/jtep-l.v10i1.64-72
Condom, T., Martínez, R., Pabón, J. D., Costa, F., Pineda, L., Nieto, J. J., López, F., & Villacis, M. (2020). Climatological and hydrological observations for the South American Andes: In situ stations, satellite, and reanalysis data sets. Frontiers in Earth Science, 8, 92. https://doi.org/10.3389/feart.2020.00092 DOI: https://doi.org/10.3389/feart.2020.00092
Degefu, M. A., Bewket, W., & Amha, Y. (2022). Evaluating performance of 20 global and quasi-global precipitation products in representing drought events in Ethiopia I : Visual and correlation analysis. Weather and Climate Extremes, 35, 100416. https://doi.org/10.1016/j.wace.2022.100416 DOI: https://doi.org/10.1016/j.wace.2022.100416
Dingman, S. L. (2015). Physical Hydrology. Waveland Press Inc.
Fadholi, A., & Adzani, R. (2018). Analisis frekuensi curah hujan ekstrem Kepulauan Bangka Belitung berbasis data climate hazards group infra-red precipitation with stations (CHIRPS). Jurnal Pendidikan Geografi, 18(1), 22–32. https://doi.org/10.17509/gea.v18i1.9504 DOI: https://doi.org/10.17509/gea.v18i1.9504
Faisol, A., Indarto, I., Novita, E., & Budiyono, B. (2020). Komparasi antara climate hazards group infrared precipitation with stations (CHIRPS) dan global precipitation measurement (GPM) dalam membangkitkan informasi curah hujan harian di provinsi Jawa Timur. Jurnal Teknologi Pertanian Andalas, 24(2), 148–156. https://doi.org/10.25077/jtpa.24.2.148-156.2020 DOI: https://doi.org/10.25077/jtpa.24.2.148-156.2020
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations — a new environmental record for monitoring extremes. Scientific Data, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66 DOI: https://doi.org/10.1038/sdata.2015.66
Gebremedhin, M. A., Lubczynski, M. W., Maathuis, B. H. P., & Teka, D. (2021). Novel approach to integrate daily satellite rainfall with in-situ rainfall, Upper Tekeze Basin, Ethiopia. Atmospheric Research, 248, 105135. https://doi.org/10.1016/j.atmosres.2020.105135 DOI: https://doi.org/10.1016/j.atmosres.2020.105135
Geleta, C. D., & Deressa, T. A. (2021). Evaluation of climate hazards group infrared precipitation station (CHIRPS) satellite-based rainfall estimates over Finchaa and Neshe Watersheds, Ethiopia. Engineering Reports, 3(6), 1–16. https://doi.org/10.1002/eng2.12338 DOI: https://doi.org/10.1002/eng2.12338
Girma, D., & Berhanu, B. (2021). Evaluation of the performance of high-resolution satellite based rainfall products for stream flow simulation. Journal of Civil & Environmental Engineering, 11(4).
Hernández-romero, P., Patiño-gómez, C., Martinez-Austria, P., & Corona-Vasquez, B. (2022). Rainfall / runoff hydrological modeling using satellite precipitation information. Water Practice & Technology, 17(5), 1082–1098. https://doi.org/10.2166/wpt.2022.048 DOI: https://doi.org/10.2166/wpt.2022.048
Hordofa, A. T., Leta, O. T., Alamirew, T., Kawo, N. S., & Chukalla, A. D. (2021). Performance evaluation and comparison of satellite-derived rainfall datasets over the Ziway Lake Basin, Ethiopia. Climate, 9. https://doi.org/https://doi.org/10.3390/cli9070113 DOI: https://doi.org/10.3390/cli9070113
Hsu, J., Huang, W. R., Liu, P. Y., & Li, X. (2021). Validation of CHIRPS precipitation estimates over Taiwan at multiple timescales. Remote Sensing, 13(2), 1–18. https://doi.org/10.3390/rs13020254 DOI: https://doi.org/10.3390/rs13020254
Ibarra-Zavaleta, S. P., Landgrave, R., Romero-López, R., Poulin, A., & Arango-Miranda, R. (2017). Distributed hydrological modeling: Determination of theoretical hydraulic potential & streamflow simulation of extreme hydrometeorological events. Water (Switzerland), 9(8). https://doi.org/10.3390/w9080602 DOI: https://doi.org/10.3390/w9080602
Liu, C. Y., Aryastana, P., Liu, G. R., & Huang, W. R. (2020). Assessment of satellite precipitation product estimates over Bali Island. Atmospheric Research, 244, 105032. https://doi.org/10.1016/j.atmosres.2020.105032 DOI: https://doi.org/10.1016/j.atmosres.2020.105032
Liu, X., Liu, F. M., Wang, X. X., Li, X. D., Fan, Y. Y., Cai, S. X., & Ao, T. Q. (2017). Combining rainfall data from rain gauges and TRMM in hydrological modelling of Laotian data-sparse basins. Applied Water Science, 7, 1487–1496. https://doi.org/10.1007/s13201-015-0330-y DOI: https://doi.org/10.1007/s13201-015-0330-y
López-Bermeo, C., Montoya, R. D., Caro-Lopera, F. J., & Díaz-García, J. A. (2022). Validation of the accuracy of the CHIRPS precipitation dataset at representing climate variability in a tropical mountainous region of South America. Physics and Chemistry of the Earth, 127, 103184. https://doi.org/10.1016/j.pce.2022.103184 DOI: https://doi.org/10.1016/j.pce.2022.103184
Macharia, D., Fankhauser, K., Selker, J. S., Neff, J. C., & Thomas, E. A. (2022). Validation and intercomparison of satellite-based rainfall products over Africa with TAHMO in situ rainfall observations. Journal of Hydrometeorology, 23(7), 1131–1154. https://doi.org/10.1175/JHM-D-21-0161.1 DOI: https://doi.org/10.1175/JHM-D-21-0161.1
Mazzoglio, P., Laio, F., Balbo, S., Boccardo, P., & Disabato, F. (2019). Improving an extreme rainfall detection system with GPM imerg data. Remote Sensing, 11(6), 1–24. https://doi.org/10.3390/rs11060677 DOI: https://doi.org/10.3390/rs11060677
Nashwan, M. S., Shahid, S., Dewan, A., Ismail, T., & Alias, N. (2020). Performance of five high resolution satellite-based precipitation products in arid region of Egypt: An evaluation. Atmospheric Research, 236, 104809. https://doi.org/10.1016/j.atmosres.2019.104809 DOI: https://doi.org/10.1016/j.atmosres.2019.104809
Nawaz, M., Iqbal, M. F., & Mahmood, I. (2021). Validation of CHIRPS satellite-based precipitation dataset over Pakistan. Atmospheric Research, 248, 105289. https://doi.org/10.1016/j.atmosres.2020.105289 DOI: https://doi.org/10.1016/j.atmosres.2020.105289
Paredes-Trejo, F., Barbosa, H. A., Kumar, T. V. L., Thakur, M. K., & Buriti, C. de O. (2021). Assessment of the CHIRPS-based satellite precipitation estimates. Inland Waters - Dynamics and Ecology, 1–18. https://doi.org/10.5772/intechopen.91472 DOI: https://doi.org/10.5772/intechopen.91472
Paredes-Trejo, F. J., Barbosa, H. A., & Lakshmi Kumar, T. V. (2017). Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. Journal of Arid Environments, 139, 26–40. https://doi.org/10.1016/j.jaridenv.2016.12.009 DOI: https://doi.org/10.1016/j.jaridenv.2016.12.009
Peng, J., Liu, T., Huang, Y., Ling, Y., Li, Z., Bao, A., Chen, X., Kurban, A., & De Maeyer, P. (2021). Satellite-based precipitation datasets evaluation using gauge observation and hydrological modeling in a typical arid land watershed of central asia. Remote Sensing, 13(2), 1–26. https://doi.org/10.3390/rs13020221 DOI: https://doi.org/10.3390/rs13020221
Pratama, A., Agiel, H. M., & Oktaviana, A. A. (2022). Evaluasi satellite precipitation product (GSMaP, CHIRPS, dan IMERG) di Kabupaten Lampung Selatan. Journal of Science and Applicative Technology, 6(1), 32–40. https://doi.org/10.35472/jsat.v6i1.702 DOI: https://doi.org/10.35472/jsat.v6i1.702
Rahmawati, N., Rahayu, K., & Yuliasari, S. T. (2021). Performance of daily satellite-based rainfall in groundwater basin of Merapi Aquifer System, Yogyakarta. Theoretical and Applied Climatology, 146(1–2), 173–190. https://doi.org/10.1007/s00704-021-03731-9 DOI: https://doi.org/10.1007/s00704-021-03731-9
Rivera, J. A., Marianetti, G., & Hinrichs, S. (2018). Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmospheric Research, 213, 437–449. https://doi.org/10.1016/j.atmosres.2018.06.023 DOI: https://doi.org/10.1016/j.atmosres.2018.06.023
Saemian, P., Hosseini-Moghari, S. M., Fatehi, I., Shoarinezhad, V., Modiri, E., Tourian, M. J., Tang, Q., Nowak, W., Bárdossy, A., & Sneeuw, N. (2021). Comprehensive evaluation of precipitation datasets over Iran. Journal of Hydrology, 603, 127054. https://doi.org/10.1016/j.jhydrol.2021.127054 DOI: https://doi.org/10.1016/j.jhydrol.2021.127054
Sugiyono, S. (2013). Metode Penelitian Kuantitatif, Kualitatif dan R & D. ALFABETA.
Trejo, F. J. P., Barbosa, H. A., Penaloza-Murillo, M. A., Moreno, M. A., & Farias, A. (2016). Intercomparison of improved satellite rainfall estimation with CHIRPS gridded product and rain gauge data over Venezuela. Atmósfera, 29(4), 323–342. https://doi.org/10.20937/ATM.2016.29.04.04 DOI: https://doi.org/10.20937/ATM.2016.29.04.04
Usman, M., Ndehedehe, C. E., Ahmad, B., Manzanas, R., & Adeyeri, O. E. (2021). Modeling streamflow using multiple precipitation products in a topographically complex catchment. Modeling Earth Systems and Environment, 8(2), 1875–1885. https://doi.org/10.1007/s40808-021-01198-1 DOI: https://doi.org/10.1007/s40808-021-01198-1
Wiwoho, B. S., Astuti, I. S., Alfarizi, I. A. G., & Sucahyo, H. R. (2021). Validation of three daily satellite rainfall products in a humid tropic watershed, Brantas, Indonesia: Implications to land characteristics and hydrological modelling. Hydrology, 8(4). https://doi.org/10.3390/hydrology8040154 DOI: https://doi.org/10.3390/hydrology8040154
Wulandari, A., Muliadi, M., & Apriansyah, A. (2018). Pengaruh sebaran uap air terhadap curah hujan di Kalimantan Barat. Prisma Fisika, 6(3), 160–166. https://doi.org/10.26418/pf.v6i3.28709
Xiao, S., Xia, J., & Zou, L. (2020). Evaluation of multi-satellite precipitation products and their ability in capturing the characteristics of extreme climate events over the Yangtze River Basin, China. Water (Switzerland), 12(4). https://doi.org/10.3390/W12041179 DOI: https://doi.org/10.3390/w12041179
Yeditha, P. K., Rathinasamy, M., Neelamsetty, S. S., Bhattacharya, B., & Agarwal, A. (2022). Investigation of satellite precipitation product driven rainfall-runoff model using deep learning approaches in two different catchments of India. Journal of Hydroinformatics, 24(1), 16–37. https://doi.org/10.2166/HYDRO.2021.067 DOI: https://doi.org/10.2166/hydro.2021.067
License
Copyright (c) 2023 Joko Suryanto, Amprin, Anisum
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).