Pemodelan Matematis Kinetika Pengeringan Cabai Merah dengan Perlakuan Blansing Suhu Rendah
Authors
Andi Muhammad Irfan , Nunik LestariDOI:
10.29303/jrpb.v10i1.328Published:
2022-03-24Issue:
Vol. 10 No. 1 (2022): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
browning index, cabai , model matematika, pengeringan, warnaArticles
Downloads
How to Cite
Downloads
Abstract
Blansing suhu rendah dalam waktu yang relatif lama masih jarang dilakukan sebagai perlakuan pendahuluan sebelum pengeringan cabai. Blansing suhu rendah sejatinya juga memberikan dampak positif bagi bahan yang dikeringkan. Kondisi operasi pengeringan cabai merah tersebut dapat dioptimalkan dengan mempelajari kinetika pengeringan dan model matematikanya. Penelitian ini bertujuan untuk mengidentifikasi kinetika pengeringan, menentukan model matematika pengeringan yang paling sesuai, serta untuk menganalisis warna dari cabai kering yang dihasilkan. Proses blansing dilakukan pada suhu 60°C selama 10, 15, dan 20 menit. Proses pengeringan dilakukan menggunakan alat pengering tenaga surya tipe efek rumah kaca. Lima belas model matematika pengeringan lapis tipis dipilih untuk menyimulasikan karakteristik pengeringan cabai merah dengan perlakuan blansing suhu rendah pada beberapa durasi waktu blansing. Nilai moisture ratio (MR) hasil observasi digunakan untuk menentukan MR prediksi dengan curve fitting menggunakan analisis regresi non linear. Hasil penelitian menunjukkan bahwa dibandingkan dengan perlakuan lainnya, perlakuan blansing suhu rendah selama 20 menit sebelum mengeringkan cabai dapat meningkatkan laju pengeringan bahan dan menghasilkan kadar air akhir yang lebih rendah. Warna cabai kering yang dihasilkan juga lebih baik, didukung dengan nilai browning index yang lebih rendah. Adapun model matematika yang paling akurat untuk mendeskripsikan karakteristik pengeringan cabai merah untuk tiap perlakuan adalah Model Modified Midilli-Kucuk, yang dikonfirmasi dengan analisis statistik R2 berkisar antara 0,996 – 0,997, X2 berkisar antara 0,029 x 10-2 – 0,035 x 10-2, SSE berkisar antara 1,027 x 10-2 – 1,239 x 10-2, dan RMSE berkisar antara 1,689 x 10-2 – 1,855 x 10-2.
References
Abu-Ghannam, N., & Jaiswal, A. K. (2015). Blanching as a Treatment Process: Effect on Polyphenol and Antioxidant Capacity of Cabbage. In Processing and Impact on Active Components in Food. https://doi.org/10.1016/B978-0-12-404699-3.00005-6
Afifah, N., Rahayuningtyas, A., & Kuala, S. I. (2017). Drying kinetics modeling of agricultural commodities using infrared dryer. Agritech, 37(2), 220–228. https://doi.org/10.22146/agritech.10394
Apriana, D., Basuki, E., & Alamsyah, A. (2016). Pengaruh suhu dan lama blanching terhadap beberapa komponen mutu tepung ubi jalar ungu (Ipomoea batatas L). Pro Food, 2(1), 94–100. Retrieved from http://profood.unram.ac.id/index.php/profood
Ashraf, Z., Hamidi-Esfahani, Z., & Sahari, M. A. (2012). Evaluation and characterization of vacuum drying of date paste. Journal of Agricultural Science and Technology, 14, 565–575.
Borah, A., Hazarika, K., & Khayer, S. M. (2015). Drying kinetics of whole and sliced turmeric rhizomes (Curcuma longa L.) in a solar conduction dryer. Information Processing in Agriculture, 2(2), 85–92. https://doi.org/10.1016/j.inpa.2015.06.002
Darvishi, H., Asl, A. R., Asghari, A., Azadbakht, M., Najafi, G., & Khodaei, J. (2014). Study of the drying kinetics of pepper. Journal of the Saudi Society of Agricultural Sciences, 13(2), 130–138. https://doi.org/10.1016/j.jssas.2013.03.002
Doymaz, I. (2014). Effect of blanching temperature and dipping time on drying time of broccoli. Food Science and Technology International, 20(2), 149–157. https://doi.org/10.1177/1082013213476075
Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701–717. https://doi.org/10.1080/10408398.2014.910493
Fithriani, D., Assadad, L., & Arifin, Z. (2016). Karakteristik dan model matematika kurva pengeringan rumput laut Eucheuma cottonii. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 11(2), 159. https://doi.org/10.15578/jpbkp.v11i2.290
Fudholi, A., Ruslan, M., & Haw, L. (2012). Mathematical modeling of brown seaweed drying curves. In Proceedings of the WSEAS International Conference on Applied Mathematics in Electrical and Computer Engineering, 207–211. Retrieved from http://www.wseas.us/e-library/conferences/2012/CambridgeUSA/MATHCC/MATHCC-32.pdf
Guzek, D., Wierzbicka, A., & Wiejskiego, G. (2012). Analysis of parameters effect of low-temperature blanching process. Journal of Research and Applications in Agricultural Engineering, 57(1), 59–62.
Hadibi, T., Boubekri, A., Mennouche, D., Benhamza, A., & Abdenouri, N. (2021). 3E analysis and mathematical modelling of garlic drying process in a hybrid solar-electric dryer. Renewable Energy, 170, 1052–1069. https://doi.org/10.1016/j.renene.2021.02.029
Hawa, L. C., Ubaidillah, U., & Wibisono, Y. (2019). Proper model of thin layer drying curve for taro (Colocasia esculenta L. Schott) chips. International Food Research Journal, 26(1), 209–216.
Irfan, A. M., Arimansyah, Rasyid, A. R., & Lestari, N. (2020). Unjuk kerja pengering tenaga surya tipe efek rumah kaca untuk pengeringan cabai dengan perlakuan low temperature long time blanching. Rona Teknik Pertanian, 13(April), 1–12. https://doi.org/10.17969/rtp.v13i2.17788
Irfan, A. M., Lestari, N., Arimansyah, A., & Rasyid, A. R. (2021). Kinetika pengeringan cabai dengan perlakuan blansing suhu rendah-waktu lama. AGRITEKNO: Jurnal Teknologi Pertanian, 10(1), 24–35. https://doi.org/10.30598/jagritekno.2021.10.1.24
Rad, S. J., Kaveh, M., Sharabiani, V. R., & Taghinezhad, E. (2018). Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 54(11), 3361–3374. https://doi.org/10.1007/s00231-018-2377-4
Jiang, J., Dang, L., Tan, H., Pan, B., & Wei, H. (2017). Thin layer drying kinetics of pre-gelatinized starch under microwave. Journal of the Taiwan Institute of Chemical Engineers, 72, 10–18. https://doi.org/10.1016/j.jtice.2017.01.005
Lee, J. H., & Zuo, L. (2013). Mathematical modeling on vacuum drying of Zizyphus jujuba Miller slices. Journal of Food Science and Technology, 50(1), 115–121. https://doi.org/10.1007/s13197-011-0312-5
Lestari, N., Fadilah, R., Mukhlis, A. M. A., & Samsuar. (2020). Efek perlakuan low temperature long time blanching terhadap karakteristik cabai kering. Agrika, 14(November), 140–156. https://doi.org/10.31328/ja.v14i2.1619
Lestari, N., & Samsuar. (2021). Analysis of red chilli drying kinetics affected by low-temperature long time blanching. IOP Conference Series: Earth and Environmental Science, 807(3). https://doi.org/10.1088/1755-1315/807/3/032002
Lestari, N., Samsuar, S., Novitasari, E., & Rahman, K. (2020). Performance of cabinet dryer in the red ginger drying by utilizing the waste heat of air conditioner condenser. Jurnal Agritechno, 13(1), 57–70. https://doi.org/10.20956/at.v13i1.250
Mazandarani, Z., Aghajani, N., Daraei Garmakhany, A., Bani Ardalan, M. J., & Nouri, M. (2017). Mathematical modeling of thin layer drying of pomegranate (Punica granatum L.) Arils: Various drying methods. Journal of Agricultural Science and Technology, 19, 1527–1537.
Mukhtarom, K., Sutrisno, & Hasbullah, R. (2016). Perlakuan air panas diikuti pencelupan dalam larutan CaCl2 untuk mempertahankan kualitas buah belimbing manis (Averrhoa Carambola L.). Jurnal Keteknikan Pertanian, 4(1), 37–44.
Murali, S., Sathish Kumar, K., Alfiya, P. V., Delfiya, D. S. A., & Samuel, M. P. (2019). Drying kinetics and quality characteristics of Indian mackerel (Rastrelliger kanagurta) in solar–electrical hybrid dryer. Journal of Aquatic Food Product Technology, 28(5), 541–554. https://doi.org/10.1080/10498850.2019.1604597
Nag, S., & Dash, K. K. (2016). Mathematical modeling of thin layer drying kinetics and moisture diffusivity study of elephant apple. International Food Research Journal, 23(6), 2594–2600.
Ngobese, N. Z., Workneh, T. S., & Siwela, M. (2017). Effect of low-temperature long-time and high-temperature short-time blanching and frying treatments on the French fry quality of six Irish potato cultivars. Journal of Food Science and Technology, 54(2), 507–517. https://doi.org/10.1007/s13197-017-2495-x
Omolola, A. O., Kapila, P. F., & Silungwe, H. M. (2019). Mathematical modeling of drying characteristics of Jew’s mallow (Corchorus olitorius) leaves. Information Processing in Agriculture, 6(1), 109–115. https://doi.org/10.1016/j.inpa.2018.08.003
Orikasa, T., Ono, N., Watanabe, T., Ando, Y., Shiina, T., & Koide, S. (2018). Impact of blanching pretreatment on the drying rate and energy consumption during far-infrared drying of Paprika (Capsicum annuum L.). Food Quality and Safety, 2(2), 97–103. https://doi.org/10.1093/fqsafe/fyy006
Prasetyo, D. J., Jatmiko, T. H., & Poeloengasih, C. D. (2018). Drying characteristics of Ulva sp. and Sargassum sp. seaweeds. Jurnal Pascapanen dan Bioteknologi Kelautan Dan Perikanan, 13(1), 1–12. https://doi.org/10.15578/jpbkp.v13i1.515
Purwanto, Y. A., & Effendi, R. N. (2016). Penggunaan Asam Askorbat dan Lidah Buaya untuk Menghambat Pencoklatan pada Buah Potong Apel Malang. Jurnal Keteknikan Pertanian, 4(2), 203–210.
Rabha, D. K., Muthukumar, P., & Somayaji, C. (2017). Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer. Renewable Energy, 105, 583–589. https://doi.org/10.1016/j.renene.2016.12.091
Rodríguez, J., Clemente, G., Sanjuán, N., & Bon, J. (2014). Modelling drying kinetics of thyme (Thymus vulgaris L.): Theoretical and empirical models, and neural networks. Food Science and Technology International, 20(1), 13–22. https://doi.org/10.1177/1082013212469614
Taheri-Garavand, A., & Meda, V. (2018). Drying kinetics and modeling of savory leaves under different drying conditions. International Food Research Journal, 25(4), 1357–1364.
Taheri-Garavand, A., & Meda, V. (2018). Drying kinetics and modeling of savory leaves under different drying conditions. International Food Research Journal, 25(4), 1357–1364.
Tezcan, D., Sabanci, S., Cevik, M., Cokgezme, O. F., & Icier, F. (2020). Infrared drying of dill leaves: drying characteristics, temperature distributions, performance analyses and colour changes. Food Science and Technology International, 27(1), 32–45. https://doi.org/10.1177/1082013220929142
Tunde-Akintunde, T. Y. (2011). Mathematical modeling of sun and solar drying of chilli pepper. Renewable Energy, 36(8), 2139–2145. https://doi.org/10.1016/j.renene.2011.01.017
Usman, Muchtar, A., Muhammad, U., & Lestari, N. (2020). Prototype and performance of hybrid solar heating and photovoltaic heater grain dryer with temperature monitoring system. Jurnal Teknik Elektro, 12(1), 24–32. https://doi.org/10.15294/jte.v12i1.24028
Wang, H., Zhang, Q., Mujumdar, A. S., Fang, X. M., Wang, J., Pei, Y. P., Xiao, H. W. (2020). High-humidity hot air impingement blanching (HHAIB) efficiently inactivates enzymes, enhances extraction of phytochemicals and mitigates brown actions of chili pepper. Food Control, 111. https://doi.org/10.1016/j.foodcont.2019.107050
Wang, J., Law, C. L., Nema, P. K., Zhao, J. H., Liu, Z. L., Deng, L. Z., Xiao, H. W. (2018). Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. Journal of Food Engineering, 224, 129–138. https://doi.org/10.1016/j.jfoodeng.2018.01.002
Wang, Y., Zhang, M., & Mujumdar, A. S. (2011). Convective Drying Kinetics and Physical Properties of Silver Carp (Hypophthalmichthys molitrix) Fillets. Journal of Aquatic Food Product Technology, 20(4), 361–378. https://doi.org/10.1080/10498850.2011.575536
Yang, L., Hu, Z., Xie, S., & Yang, M. (2018). Hot-air drying characteristics and quality evaluation of bitter melon slice. INMATEH - Agricultural Engineering, 55(2), 53–62.
Yelmen, B., Un, C., Sahin, H. H., & Yuksekdag, M. (2019). Mathematical modelling of greenhouse drying of red chilli pepper. African Journal of Agricultural Research, 14(9), 539–547. https://doi.org/10.5897/ajar2018.13748
Yosika, N. I. W., Hawa, L. C., & Hendrawan, Y. (2020). Characteristics and drying rate of cabya (Piper retrofractum Vahl.) with natural drying method (open sun drying). Jurnal Teknologi Pertanian, 21(3), 165–174.
Zakipour, E., & Hamidi, Z. (2011). Vacuum drying characteristics of some vegetables. 30(4), 97–105.
Zambrano-Zaragoza, M. L., Mercado-Silva, E., Del Real L., A., Gutiérrez-Cortez, E., Cornejo-Villegas, M. A., & Quintanar-Guerrero, D. (2014). The effect of nano-coatings with alpha-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “red Delicious” apples. Innovative Food Science and Emerging Technologies, 22, 188–196. https://doi.org/10.1016/j.ifset.2013.09.008
License
Copyright (c) 2022 Andi Muhammad Irfan, Nunik Lestari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).