Analisis Produktivitas dan Kualitas Buah Stoberi var Sujarli (Rosalinda) Berdasarkan Model Budidaya dan Pengolahan Citra Digital
Authors
Sri Handayani Nofiyanti , Yohanes Setiyo , Mukhes Sri Muna , I Putu Surya Wirawan , Nur Ida Winni YosikaDOI:
10.29303/jrpb.v13i2.1187Published:
2025-09-29Issue:
Vol. 13 No. 2 (2025): Jurnal Ilmiah Rekayasa Pertanian dan BiosistemKeywords:
digital image analysis, HSV color space, fertigated cultivation, multiple linear regression strawberry, Total Soluble Solids (TSS)Articles
How to Cite
Downloads
Abstract
Strawberry (Fragaria sp.) is a high-value horticultural commodity with broad market potential, particularly in tropical highland areas such as Bedugul, Bali. However, its productivity and fruit quality are often constrained by climatic fluctuations and limited application of appropriate cultivation technologies. This study aimed to evaluate the productivity and fruit quality of Sujarli (Rosalinda) strawberry variety under four cultivation models: conventional open field, tunnel, fertigated open field, and greenhouse. In addition, a predictive model for Total Soluble Solids (TSS) content was developed using fruit color parameters obtained through digital image analysis. A total of 100 strawberry samples across five ripening stages were analyzed for biometrical characteristics (length, diameter, and weight), pH, and TSS. Image analysis was performed in two color spaces, namely RGB and HSV, and the corresponding color values were used as input variables in a multiple linear regression (MLR) model to predict TSS values. The results showed that the fertigated open field system produced strawberries with good physical and chemical quality, making it a feasible option for small-scale farmers. The MLR model based on HSV color space outperformed the RGB-based model, achieving R² values of 0.826 (training) and 0.775 (testing), with lower RMSE values as well. These findings support the use of digital color data as a non-destructive indicator for assessing the quality of strawberries during postharvest evaluation.
References
Aazami, M. A., Asghari-Aruq, M., Hassanpouraghdam, M. B., Ercisli, S., Baron, M., & Sochor, J. (2021). Low Temperature Stress Mediates the Antioxidants Pool and Chlorophyll Fluorescence in Vitis vinifera L. Cultivars. Plants (Basel, Switzerland), 10(9). https://doi.org/10.3390/plants10091877 DOI: https://doi.org/10.3390/plants10091877
Abeles, F. B., & Takeda, F. (1990). Cellulase activity and ethylene in ripening strawberry and apple fruits. Scientia Horticulturae, 42(4), 269–275. https://doi.org/https://doi.org/10.1016/0304-4238(90)90050-O DOI: https://doi.org/10.1016/0304-4238(90)90050-O
Agulheiro-Santos, A. C., Ricardo-Rodrigues, S., Laranjo, M., Melgão, C., & Velázquez, R. (2022). Non-destructive prediction of total soluble solids in strawberry using near infrared spectroscopy. Journal of the Science of Food and Agriculture, 102(11), 4866–4872. https://doi.org/https://doi.org/10.1002/jsfa.11849 DOI: https://doi.org/10.1002/jsfa.11849
Amirullah, I., Areni, I. S., & Arifin, N. (2019). Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Metode HSV. Jurnal Penelitian Enjiniring, 23(2), 113–116. https://doi.org/10.25042/jpe.112019.03 DOI: https://doi.org/10.25042/jpe.112019.03
Arulmozhi, E., Moon, B. E., Basak, J. K., Sihalath, T., Park, J., & Kim, H. T. (2021). Machine learning-based microclimate model for indoor air temperature and relative humidity prediction in a swine building. Animals, 11(1), 1–24. https://doi.org/10.3390/ani11010222 DOI: https://doi.org/10.3390/ani11010222
Badan Pusat Statistik Provinsi Bali. (2024). Banyaknya wisatawan mancanegara bulanan ke Bali menurut pintu masuk. https://bali.bps.go.id/id/statistics-table/2/MTA2IzI=/banyaknya-wisatawan-mancanegara-bulanan-ke-bali-menurut-pintu-masuk.html
Basak, J. K., Okyere, F. G., Arulmozhi, E., Park, J., Khan, F., & Kim, H. T. (2020). Artificial neural networks and multiple linear regression as potential methods for modelling body surface temperature of pig. Journal of Applied Animal Research, 48(1), 207–219. https://doi.org/10.1080/09712119.2020.1761818 DOI: https://doi.org/10.1080/09712119.2020.1761818
Choi, Hyo Gil, & Kang, Nam Jun. (2018). Effect of light and carbon dioxide on photosynthesis, chlorophyll fluorescence, and fruit yield in strawberry (Fragaria × ananassa Duch.) plants. Journal of Berry Research, 9(1), 51–61. https://doi.org/10.3233/JBR-18303 DOI: https://doi.org/10.3233/JBR-18303
Dinas Pertanian Provinsi Bali. (2023). Laporan tahunan subsektor hortikultura tahun 2023. Denpasar: Dinas Pertanian Provinsi Bali
Doymaz, İ. (2008). Convective drying kinetics of strawberry. Chemical Engineering and Processing: Process Intensification, 47(5), 914–919. https://doi.org/https://doi.org/10.1016/j.cep.2007.02.003 DOI: https://doi.org/10.1016/j.cep.2007.02.003
Fan, Z., Verma, S., Lee, H., Jang, Y. J., Wang, Y., Lee, S., Whitaker, V. M. (2024). Strawberry soluble solids QTL with inverse effects on yield. Horticulture Research, 11, 1-8. https://doi.org/10.1093/hr/uhad271 DOI: https://doi.org/10.1093/hr/uhad271
Ferreyra, R. M., Viña, S. Z., Mugridge, A., & Chaves, A. R. (2007). Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Scientia Horticulturae, 112(1), 27–32. https://doi.org/https://doi.org/10.1016/j.scienta.2006.12.001 DOI: https://doi.org/10.1016/j.scienta.2006.12.001
Figueroa, C. R., Pimentel, P., Gaete-Eastman, C., Moya, M., Herrera, R., Caligari, P. D. S., & Moya-León, M. A. (2008). Softening rate of the Chilean strawberry (Fragaria chiloensis) fruit reflects the expression of polygalacturonase and pectate lyase genes. Postharvest Biology and Technology, 49(2), 210–220. https://doi.org/https://doi.org/10.1016/j.postharvbio.2008.01.018 DOI: https://doi.org/10.1016/j.postharvbio.2008.01.018
Forján, E., VÃlchez, C., Casal, C., Gálvez, A. C., & de la Morena, B. A. (2009). STRAWBERRY CROP UNDER PLASTIC FILMS THAT ATTENUATE UV AND/OR PAR AND/OR INFRARED (IR) RADIATIONS: PLANT DEVELOPMENT AND FRUIT PRODUCTIVITY AND QUALITY. Acta Horticulturae, 842, 181–184. https://doi.org/10.17660/ActaHortic.2009.842.24 DOI: https://doi.org/10.17660/ActaHortic.2009.842.24
Guiamba, H. D. S. S., Zhang, X., Sierka, E., Lin, K., Ali, M. M., Ali, W. M., Lamlom, S. F., Kalaji, H. M., Telesiński, A., Yousef, A. F., & Xu, Y. (2022). Enhancement of photosynthesis efficiency and yield of strawberry (Fragaria ananassa Duch.) plants via LED systems. Frontiers in Plant Science, 13, 918038. https://doi.org/10.3389/fpls.2022.918038 DOI: https://doi.org/10.3389/fpls.2022.918038
Hutchinson, G. K., Nguyen, L. X., Rubio Ames, Z., Nemali, K., & Ferrarezi, R. S. (2024). Sensor-controlled fertigation management for higher yield and quality in greenhouse hydroponic strawberries. Frontiers in Plant Science, 15(January), 1–14. https://doi.org/10.3389/fpls.2024.1469434 DOI: https://doi.org/10.3389/fpls.2024.1469434
Janke, R. R., Altamimi, M. E., & Khan, M. (2017). The Use of High Tunnels to Produce Fruit and Vegetable Crops in North America. Agricultural Sciences, 08(07), 692–715. https://doi.org/10.4236/as.2017.87052 DOI: https://doi.org/10.4236/as.2017.87052
Janurianti, N. M. D., I Made Supartha Utama, & Ida Bagus Wayan Gunam. (2021). Colour and Quality of Strawberry fruit (Fragaria x ananassa Duch.) at Different Levels of Maturity. SEAS (Sustainable Environment Agricultural Science), 5(1), 22–28. https://doi.org/10.22225/seas.5.1.3166.22-28 DOI: https://doi.org/10.22225/seas.5.1.3166.22-28
Kafkas, E., Koşar, M., Paydaş, S., Kafkas, S., & Başer, K. H. C. (2007). Quality characteristics of strawberry genotypes at different maturation stages. Food Chemistry, 100(3), 1229–1236. https://doi.org/https://doi.org/10.1016/j.foodchem.2005.12.005 DOI: https://doi.org/10.1016/j.foodchem.2005.12.005
Karlidag, H., Yildirim, E., & Turan, M. (2009). Exogenous applications of salicylic acid affect quality and yield of strawberry grown under antifrost heated greenhouse conditions. Journal of Plant Nutrition and Soil Science, 172(2), 270–276. https://doi.org/https://doi.org/10.1002/jpln.200800058 DOI: https://doi.org/10.1002/jpln.200800058
Katsoulas, N., Bari, A., & Papaioannou, C. (2020). Plant responses to UV blocking greenhouse covering materials: A review. Agronomy, 10(7), 1–17. https://doi.org/10.3390/agronomy10071021 DOI: https://doi.org/10.3390/agronomy10071021
Madhavi, B. G. K., Basak, J. K., Paudel, B., Kim, N. E., Choi, G. M., & Kim, H. T. (2022). Prediction of Strawberry Leaf Color Using RGB Mean Values Based on Soil Physicochemical Parameters Using Machine Learning Models. Agronomy, 12(5). https://doi.org/10.3390/agronomy12050981 DOI: https://doi.org/10.3390/agronomy12050981
Manley, M. (2014). Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chemical Society Reviews, 43(24), 8200–8214. https://doi.org/10.1039/C4CS00062E DOI: https://doi.org/10.1039/C4CS00062E
Massa, D., Incrocci, L., & Thompson, R. B. (2023). Innovations and insights into fertigation management for a protected cultivation in transition. Acta Horticulturae, 1377, 709–724. https://doi.org/10.17660/ActaHortic.2023.1377.87 DOI: https://doi.org/10.17660/ActaHortic.2023.1377.87
Mehriya, M. L., Neelam Geat, Sarita, Singh, H., Mattar, M. A., & Elansary, H. O. (2020). of Drip Response Irrigation of Drip and Fertigation Irrigation and on Fertigation on Response of Drip Irrigation and Fertigation on Cumin Cumin Yield , Quality , Efficiency E ffi ciency Grown under Grown under Arid Grown Climatic under Conditions Arid Cli. Agronomy, 10(1711), 1–16. DOI: https://doi.org/10.3390/agronomy10111711
Nascimento, G. G. F., Locatelli, J., Freitas, P. C., & Silva, G. L. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. In Brazilian Journal of Microbiology (Vol. 31). scielo . DOI: https://doi.org/10.1590/S1517-83822000000400003
Ornelas-Paz, J. de J., Yahia, E. M., Ramírez-Bustamante, N., Pérez-Martínez, J. D., Escalante-Minakata, M. del P., Ibarra-Junquera, V., Acosta-Muñiz, C., Guerrero-Prieto, V., & Ochoa-Reyes, E. (2013). Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening. Food Chemistry, 138(1), 372–381. https://doi.org/https://doi.org/10.1016/j.foodchem.2012.11.006 DOI: https://doi.org/10.1016/j.foodchem.2012.11.006
Perkins Veazie, P. (1987). Growth and Ripening of Strawberry Fruit Under Field Conditions. Proc. Fla. State Hort. Soc., 17, 267–297. DOI: https://doi.org/10.1002/9780470650585.ch8
Shen, F., Zhang, B., Cao, C., & Jiang, X. (2018). On-line discrimination of storage shelf-life and prediction of post-harvest quality for strawberry fruit by visible and near infrared spectroscopy. Journal of Food Process Engineering, 41(7), e12866. https://doi.org/https://doi.org/10.1111/jfpe.12866 DOI: https://doi.org/10.1111/jfpe.12866
Silva, L. I. da, Oliveira, I. P. de, Jesus, E. da C., Pereira, M. C., Pasqual, M., Araújo, R. C. de, & Dória, J. (2022). Fertilizer of the Future: Beneficial Bacteria Promote Strawberry Growth and Yield and May Reduce the Need for Chemical Fertilizer. Agronomy, 12(10). https://doi.org/10.3390/agronomy12102465 DOI: https://doi.org/10.3390/agronomy12102465
Sim, H. S., Kim, D. S., Ahn, M. G., Ahn, S. R., Kim, S. K. (2020). Prediction of Strawberry Growth and Fruit Yieldbased on Environmental and Growth Data in a Greenhouse for Soil Cultivation with AppliedAutonomous Facilities. Horticultural Science and Technology, 38 (6). https://doi.org/10.7235/HORT.20200076 DOI: https://doi.org/10.7235/HORT.20200076
Ullah, I., Toor, M. D., Yerlikaya, B. A., Mohamed, H. I., Yerlikaya, S., Basit, A., & Rehman, A. U. (2024). High-temperature stress in strawberry: understanding physiological, biochemical and molecular responses. Planta, 260(5), 118. https://doi.org/10.1007/s00425-024-04544-6 DOI: https://doi.org/10.1007/s00425-024-04544-6
Villanueva, M. J., Tenorio, M. D., Esteban, M. A., & Mendoza, M. C. (2004). Compositional changes during ripening of two cultivars of muskmelon fruits. Food Chemistry, 87(2), 179–185. https://doi.org/https://doi.org/10.1016/j.foodchem.2003.11.009 DOI: https://doi.org/10.1016/j.foodchem.2003.11.009
Wu, Y., Li, L., Li, M., Zhang, M., Sun, H., & Sigrimis, N. (2020). Optimal fertigation for high yield and fruit quality of greenhouse strawberry. PLoS ONE, 15(4), 1–17. https://doi.org/10.1371/journal.pone.0224588 DOI: https://doi.org/10.1371/journal.pone.0224588
Yamanaka, R., Yano, T., Hikawa-Endo, M., Yoshikoshi, H., Kawashima, H., Tojo, M., & Wada, T. (2024). Effects of Humidification Based on Vapor Pressure Deficit (VPD) on Plant Growth, Fruit Yield, and Fruit Quality Traits in June-bearing Strawberry. The Horticulture Journal, 93(4), 377–388. https://doi.org/10.2503/hortj.QH-114 DOI: https://doi.org/10.2503/hortj.QH-114
Yang, J. W., & Kim, H. Il. (2024). An Overview of Recent Advances in Greenhouse Strawberry Cultivation Using Deep Learning Techniques: A Review for Strawberry Practitioners. Agronomy, 14(1). https://doi.org/10.3390/agronomy14010034 DOI: https://doi.org/10.3390/agronomy14010034
Yang, P., Drohan, P. J., Zhang, X., Long, H., Soulis, K. X., & Shi, X. (2025). Impacts of Deficit Irrigation on Strawberry Physiology, Water Productivity, Quality, and Yield. Sustainability (Switzerland), 17(2), 1–11. https://doi.org/10.3390/su17020675 DOI: https://doi.org/10.3390/su17020675
Zhao, T., & Xue, H. (2011). Regression analysis and indoor air temperature model of greenhouse in northern dry and cold regions. IFIP Advances in Information and Communication Technology, 345 AICT(PART 2), 252–258. https://doi.org/10.1007/978-3-642-18336-2_30 DOI: https://doi.org/10.1007/978-3-642-18336-2_30
License
Copyright (c) 2025 Sri Handayani Nofiyanti, Yohanes Setiyo, Mukhes Sri Muna, I Putu Surya Wirawan, Nur Ida Winni Yosika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Ilmiah Rekayasa Pertanian dan Biosistem (JRPB).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).